首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
2.
利用长距离RT-PCR技术扩增病毒基因组3'端覆盖口蹄疫病毒Asial/JS/China/2005株近全长的3个片段(共约7.5 kb),并利用单一酶切位点将其分别克隆到pBlueseriptSK+载体上.利用融合PCR扩增到基因组5'端含有15个C碱基的基因片段(约700 bp),并将其连接至pGEM-T载体.最后将这4个片段的阳性克隆装配至剔除T7启动子的低拷贝载体pcDNA3.1/Zeo(+)中构建该病毒株的全长cDNA克隆.以构建的FMDV Asial/JS/China/2005株全长cDNA为模板,使用TTRNA聚合酶在体外转录得到病毒RNA,通过脂质体将其导入BHK细胞获得拯救病毒.对收获的病毒分别用RT-PCR、间接免疫荧光、电子显微镜观察和乳鼠致病性分析结果证实,通过体外转录获得了具有感染性的口蹄疫病毒.该株感染性克隆的构建为深入研究口蹄疫病毒的致病机制及研制新型疫苗等奠定了基础.  相似文献   

3.
4.
O型泛亚谱系口蹄疫病毒cDNA感染性克隆的建立   总被引:4,自引:2,他引:2  
本研究采用RT-PCR技术将O型口蹄疫病毒(FMDV)O/YS/CHA/05株全长基因组分4个cDNA片段进行克隆、拼接,构建了具有感染性的FMDV cDNA克隆pOKT7-OY/S/CHA/05.将线性化的pOKT7-O/YS/CHA/05在细胞外转录获得的病毒RNA转染BHK-21细胞,经培养可见典型的细胞病变(CPE).同时,将线性化的pOKT7-O/YS/CHA/05与含有编码T7 RNA聚合酶的真核表达重组质粒共转染BHK-21细胞,同样也观察到典型的CPE.对拯救的病毒进行RT-PCR扩增、酶切和序列分析鉴定表明,拯救病毒含有不同于亲本病毒的分子标记,即在病毒核酸的3 510位人工消除了Xba Ⅰ酶切位点.免疫电镜观察和间接免疫荧光试验进一步表明,拯救出了FMDV.病毒生长比较试验表明,拯救病毒与亲本病毒具有相似的增殖特性.本研究构建了O型口蹄疫病毒的感染性克隆并获得了拯救病毒,为深入研究FMDV的致病机理以及开发新型疫苗提供了有效的反向遗传操作平台.  相似文献   

5.
本研究旨在建立猪脑心肌炎病毒(EMCV)的感染性克隆技术.利用RT-PCR分3段扩增出脑心肌炎病毒BJC3株的全基因组cDNA,依次克隆至低拷贝质粒pWSK29,构建出全长质粒pWSKBJC3/w,经体外转录和转染BHK-21细胞拯救病毒.结果表明,构建的全长cDNA克隆具有感染性,在BHK-21细胞上可拯救出病毒.拯救病毒(命名为rVBJC3W)在BHK-21细胞上的生长特性与其亲本病毒BJC3一致,并保持了对小鼠的致病性.本研究成功构建了中国第1株猪脑心肌炎病毒的感染性克隆,为深入研究其分子致病机制提供了必要的工具.  相似文献   

6.
为构建O型口蹄疫病毒(FMDV)的感染性克隆,采用RT-PCR将O型FMDV OHM/02株全长基因组分为5个重叠的片段进行扩增,克隆至载体pUC57中,获得全长cDNA克隆pPO-1。将线性化的pPO-1与含有编码T7 RNA聚合酶的真核表达重组质粒共转染BHK-21细胞,出现致细胞病变效应(CPE)。对拯救的病毒进行RT-PCR扩增、酶切、测序,表明人工设计的分子标记Bam HⅠ酶切位点消失,排除了亲本毒株污染的可能性。间接免疫荧光试验可以检测到绿色荧光,电镜观察可观察到病毒粒子,表明构建了具有感染性的OHM/02毒株全长cDNA克隆。病毒生长曲线表明,拯救病毒与亲本病毒的复制能力和增殖特性相似。OHM/02株全长cDNA感染性克隆的构建及拯救可为FMDV致病机理的研究提供一种重要工具,可促进疫苗的研发。  相似文献   

7.
反向遗传操作技术(reverse genetics,RG)是一种新兴的分子生物学技术,该技术可以在DNA水平上对病毒基因组进行各种修饰或改造,然后通过拯救病毒的表型变化来判断这些基因操作的效果,从而可以对病毒基因组表达调控机制、病毒致病的分子机理等进行研究。作者就口蹄疫病毒反向遗传研究的意义、方法及应用等方面进行了综述。  相似文献   

8.
为构建高致病性猪繁殖与呼吸综合征病毒(PRRSV)感染性克隆,本实验根据PRRSV HuN4株基因组序列设计并合成PRRSV特异性引物,应用RT-PCR技术分6段扩增了PRRSV HuN4株全基因组cDNA.将扩增的各个cDNA部分重叠片段分别克隆于pBlueScript Ⅱ SK(+)载体中构建了感染性重组质粒pHuN4.并在病毒cDNA 5′末端引入sp6启动子序列便于后期的体外转录获得病毒的转录本,在3'末段Poly (A)尾引入Not Ⅰ酶切位点用于线性化pHuN4;此外,将HuN4基因组第14680位的A沉默突变为G产生一个Mlu Ⅰ酶切位点作为鉴定拯救病毒的分子标记.pHuN4通过酶切线性化后经体外转录及转染BHK细胞,并在Marc-145细胞中救获病毒.结果显示:救获的病毒能够在Marc145细胞引起明显的细胞病变;间接免疫荧光检测以及分子标记验证结果表明病毒拯救成功,而且拯救的病毒与亲本强毒生长曲线没有显著差异.利用拯救的第5代克隆病毒株对本动物进行致病性试验,结果显示实验猪在感染后第3d开始出现体温升高、厌食、消瘦等临床表现,发病率达100%,在感染后20 d内陆续死亡,表明拯救的病毒保持了与亲本病毒株相一致的致病特征,以上研究证实我们成功的构建并获得PRRSV强毒HuN4株感染性克隆,为从基因水平上研究PRRSV的致病机制提供了技术平台.  相似文献   

9.
利用同源重组技术,通过一步法快速构建A型塞内卡病毒(Senecavirus A,SVA)感染性克隆平台,从而为研究其致病机理、构建标记疫苗等奠定基础。依次扩增CMV启动子、SVA全基因组、poly(A)尾巴及丁肝核酶序列(HDVr),利用同源重组技术,将3段核酸片段整合进低拷贝载体pWSK-29。将菌落PCR鉴定正确的感染性克隆质粒(pWSK-29-SVA)转染BHK-21细胞,拯救病毒,在盲传第5代时对拯救病毒进行基因测序鉴定,并对其进行生物学特性分析。结果显示:成功构建了SVA感染性克隆质粒(pWSK-29-SVA),成功拯救了病毒,将拯救病毒命名为rSVA(rescued SVA);rSVA测序结果与亲本病毒高度同源,且二者生物学特性相似。结果表明,本试验经同源重组法一步构建pWSK-29-SVA感染性克隆平台,避免了传统感染性克隆中酶切、连接及寻找酶切位点带来的繁琐与不便,构建方案更为灵活多样,大大提高了便利性与实效性,且拯救出的病毒生物学特性与亲本毒株高度一致。本研究为进一步研究SVA致病机理、构建疫苗提供了平台。  相似文献   

10.
口蹄疫病毒基因组结构及其功能   总被引:9,自引:0,他引:9  
口蹄疫病毒的基因组结构和功能是开展口蹄疫其他研究如鉴别诊断、新型疫苗研制和疫源追踪等工作的基础。口蹄疫病毒的基因组由5′UTR、ORF和3′UTR及Po ly(A)组成,全长约8 500 nt。VPg可能充当RNA合成引物的作用, 5′UTR 内的Poly(C)和内部核糖体进入位点(internalribosomaentrysite, IRES)是当前研究的热点之一。Poly(C)可能与病毒的感染性有关,IRES 对翻译的起始有重要作用。一般认为Poly(A)越长,病毒的感染性越强。病毒的ORF包括P1、P2、P3基因。L、P2、P3研究的相对较少,其中3A与病毒的宿主嗜性有关,3D为RNA聚合酶,可作为免疫和自然感染动物的鉴别诊断抗原。P1 为口蹄疫病毒的抗原结构,是研究口蹄疫免疫机制和新型疫苗的基础。VP1 可以作为分子流行病学调查,被很多国家所采用。  相似文献   

11.
反向遗传学技术及在RNA病毒研究中的应用   总被引:1,自引:0,他引:1  
RNA病毒的反向遗传学技术是指由病毒的cDNA克隆获取RNA病毒的一项技术,该技术通过人为加入DNA基因片段,实现了在DNA水平上对RNA病毒基因组的人工操作。反向遗传系统可以对RNA病毒直接进行遗传操作,为RNA病毒的分子生物学研究提供了一种强大的工具。自20世纪70年代后期第一例RNA病毒感染性克隆构建成功以来,RNA病毒的分子生物学研究取得了长足的进展,这在很大程度上归功于各种RNA病毒反向遗传系统的建立。文章介绍了反向遗传学技术的基本特点、技术方法及其在正、负链RNA病毒的基因功能、致病机制及新型病毒载体等方面的研究及应用情况。  相似文献   

12.
口蹄疫病毒整合素受体研究进展   总被引:1,自引:1,他引:0  
口蹄疫病毒(Foot-and-Mouth Disease Virus,FMDV)感染宿主细胞首先是病毒与被感染细胞表面的病毒受体结合,通过网格蛋白介导的内吞途径,酸化的内吞泡运输进入细胞内,然后衣壳迅速解体,释放出基因组RNA,细胞受体决定口蹄疫病毒宿主特异性和组织特异性.对口蹄疫病毒细胞受体的研究将有助于揭示口蹄疫病毒的感染机制、复制过程、致病机理和疫病预防及治疗等,细胞受体的研究已经成为目前口蹄疫病毒研究中的重点领域之一,论文就近年来FMDV整合素受体研究现状进行了综述,并对其发展进行了展望.  相似文献   

13.
口蹄疫是发生在动物体内的一种顽固的急性、热性、高度接触性传染病,口蹄病毒群体庞大、复制突变率,是导致口蹄疫发生的根源所在.文章对口蹄疫病毒的基因组结构、致病毒力及免疫学研究进展等方面展开综述,为今后科学有效地预防口蹄疫提供理论依据.  相似文献   

14.
口蹄疫病毒反向遗传技术研究进展   总被引:1,自引:0,他引:1  
口蹄疫(FMD)是由口蹄疫病毒(FMDV)引起的一种高度接触性传染病,被世界动物卫生组织(OIE)列为必须报告的传染病之首,其暴发会严重影响畜牧业发展、人民生活以及国民经济。但目前对口蹄疫病毒的了解仍存在盲区,口蹄疫疫苗还有许多不足。病毒反向遗传学技术的飞速发展为口蹄疫病毒结构的深入研究与新型疫苗及其生物制品的研制提供了一种新的高效的技术方法。论文就国内外运用反向遗传学技术对口蹄疫病毒分子致病机理研究及利用反向遗传学操作技术研制新型 FMD 疫苗进行综述,并且展望口蹄疫病毒反向遗传学研究新动向。  相似文献   

15.
为构建猪圆环病毒2型(PCV2)感染性克隆,采用PCR方法从已鉴定为PCV2阳性的病料中扩增PCV2全长基因组片段后将其定向克隆至PVAX1载体中,构建了PCV2感染性克隆质粒p VAX1-PCV2;将重组质粒转染细胞进行病毒拯救,通过免疫过氧化物酶和RT-PCR进行拯救病毒检测,并初步测定了拯救病毒在体外细胞培养的增殖能力和遗传稳定性。结果表明,构建的PCV2感染性克隆质粒,成功拯救出PCV2,拯救病毒盲传8代后毒价可达104.78TCID50/m L,体外增殖能力较为稳定。本试验为深入研究PCV2的基因功能及致病机制等奠定基础。  相似文献   

16.
为研究马立克氏病毒(MDV)新型疫苗及MDV致病机理,将MDV强毒GD0908株的全基因组作为细菌人工染色体(BAC)转化进大肠杆菌,构建GD0908株的感染性克隆.利用同源重组将BAC载体插入MDV基因组的US2区,将包含BAC载体的MDV DNA电转化入大肠杆菌菌株DH10B,最后将鉴定成功包含GD0908株全基因组的BAC DNA转染鸡胚成纤维细胞(CEF),成功拯救出重组病毒,命名为rGD0908,其与父代病毒GD0908株在CEF细胞上的生长速度没有差异.该感染性克隆将为MDV的相关研究提供技术平台.  相似文献   

17.
《中国畜牧业》2019,(9):19-19
近日,中国农业科学院北京畜牧再医研究所,宠物疫病防控科技创新团队利用反向遗传技术,成功构建了猫细小病毒和猪细小病毒的感染性克隆,建立了一种快速构建猪细小病毒全长感染性克隆的方法.该研究为今后细小病毒疫苗的研发提供了良好的载体平台,也为其他细小病毒成员全基因组的构建提供了思路.开拓了一条新途径.相关研究成果在线发表在《病毒学文献(Archives of Virology)》上.  相似文献   

18.
为建立猪脑心肌炎病毒(EMCV)HB10株cDNA感染性克隆,本研究利用反向遗传操作技术,采用RT-PCR一次性扩增EMCV-HB10株全长基因组(包括5'和3'UTR)序列,并直接克隆于低拷贝载体pOK12中,构建了EMCV感染性重组质粒pOK12-EMCV-HB10。将重组质粒体外转录后转染BHK-21细胞进行病毒拯救。结果显示,转染细胞36 h后,出现典型的细胞病变。拯救病毒rEMCV-HB10全基因组经测序鉴定显示,与亲本病毒开放阅读框比较,其仅在1D基因出现两个核苷酸突变:即A37G(R13K)和G187C(M63I),该突变可以作为区别亲本病毒的标志。间接免疫荧光和生长曲线试验结果显示,这两个突变并不影响VP1蛋白的表达及病毒拯救,并且拯救病毒与亲本病毒具有相似的生长特性。本研究构建了感染性EMCV-HB10 cDNA克隆,为深入研究EMCV的致病分子机理提供了有效的反向遗传操作平台。  相似文献   

19.
传统灭活疫苗的免疫接种是预防和控制口蹄疫的重要手段,但口蹄疫病毒极易发生变异而常导致新突变株的产生,从而使现有疫苗不能有效防控当前流行的口蹄疫,经常需要筛选与当前流行毒株抗原匹配性好、免疫原性和复制特性优良的疫苗候选毒株。在比对分析Cathay和Pan-Asia谱系不同时间经典疫苗毒株和我国当前主要流行毒株(SEA-Mya98谱系)VP1结构蛋白的基础上,借助反向遗传操作技术,在已构建含当前流行毒株VP1基因全长感染性克隆的骨架上,引入2个氨基酸的替换(VP1 H28Q+S47Q),构建重组全长质粒,并通过转染表达T7RNA聚合酶的BSR/T7细胞成功拯救到活的重组病毒。重组病毒具有和亲本病毒相似的噬斑表型和一步生长曲线,却降低热稳定性,增强了对乳鼠的致病力。研究结果为进一步开发与当前流行毒株抗原匹配性好、免疫原性和复制特性优良的FMD疫苗候选毒株奠定了基础。  相似文献   

20.
猪流行性腹泻病毒(PEDV)是高度接触性肠道传染病猪流行性腹泻(PED)的病原,是有囊膜的单股正链RNA病毒,基因组全长约28 kb。2010年以来,PEDV G2型高致病性毒株不断发生变异,给全国乃至全球的养猪业造成巨大的经济损失。反向遗传学系统,即构建RNA病毒的全长感染性克隆。近年来,PEDV主要基于靶向RNA重组、BAC系统和体外连接3种方法来建立全长感染性cDNA克隆。文章简述了反向遗传学的原理和方法。靶向RNA重组利用冠状病毒RNA的高同源重组的特点来实现病毒的拯救;BAC系统利用pBeloBAC11载体克服PEDV基因组中含有的毒性序列所导致的cDNA在高拷贝质粒中不稳定的困难;体外连接技术主要利用PEDV基因组本身存在的限制性内切酶的酶切位点或通过改造的酶切位点在体外将病毒分片段地连接成全长的cDNA克隆。另外,文章还总结了近年来基于反向遗传学技术的PEDV相关的研究进展。PEDV反向遗传学是研究PEDV病毒基因组结构功能及设计减毒活疫苗的有效工具,利用反向遗传学技术探究S基因等毒力相关基因,探究其突变或缺失对病毒致病机制的影响,揭示PEDV毒力衰减的分子机制,有望设计出具有良好免疫原性且避免毒株返毒和重组减毒活疫苗。总之,PEDV反向遗传学是研究PEDV基因组结构及功能、病毒宿主相互作用及致病机制的一种重要方法,同时也是设计PEDV减毒活疫苗一种合理有效的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号