首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用单因素筛选和正交试验,对苏云金杆菌以色列亚种Bti-L-10高毒菌株的发酵培养基进行了优化,得到其最佳培养基配方为:淀粉3%,氮源B 0.50%,氮源C 0.75%,氮源D 4.00%,氮源G 1.00%.通过200 L和40 000 L发酵罐分别发酵,发酵液效价分别为379 ITU/mg和327 ITU/mg,发...  相似文献   

2.
[目的]筛选出高效微生物絮凝剂产生菌并优化其培养条件。[方法]利用平板培养基和液体培养基筛选出絮凝活性高且稳定的菌株,通过计算絮凝率评价其发酵液的絮凝活性,最后通过单因素试验确定所选出菌株的最佳培养条件。[结果]分离出13株具有絮凝活性的菌株,茵株MC3的发酵液对高岭土悬浊液的絮凝率可达舳.8%。培养72h和84h后菌株发酵液的絮凝率分别为80.8%和81.2%。以玉米粉和葡萄糖为碳源培养60h后菌株发酵液的絮凝率分别为92.2%和87.8%,而葡萄糖的絮凝效果更稳定。pH值6时,培养60h后菌株发酵液的絮凝率为81.O%。菌株MC3的最佳培养条件为:用葡萄糖替代查氏培养基中的蔗糖,培养液初始pH值6,接种量为10%,在该条件下培养60h和72h后菌株MC3发酵液的絮凝率分别为92.9%和92.0%。f结论]该研究为微生物絮凝剂的生产奠定了试验基础。  相似文献   

3.
从浓缩污泥中筛选到1株微生物絮凝剂产生菌,初步探讨了培养基不同碳源和氮源、不同接种量、培养时间对絮凝活性的影响,并对该菌进行生理生化鉴定、絮凝活性分布、替代培养基试验。试验结果表明,该菌在最佳培养条件下对高岭土悬浊液的絮凝率为87.14%;革兰氏阳性杆状细菌,属于固氮菌;微生物絮凝剂主要分布在发酵液离心后的上清液中,且絮凝效果优于0.1%聚丙烯酰胺;该菌能在沼液中生长,且发酵液絮凝率为76.82%。  相似文献   

4.
从污泥中分离到1株絮凝剂产生菌,命名为MBF11。根据生理生化实验和16S rDNA序列同源性分析,初步鉴定MBF11为地衣芽孢杆菌(Bacillus licheniformis)。利用单因子试验对MBF11的培养基碳氮源进行了优化,以提高絮凝活性和降低生产成本。结果表明适宜的碳源为玉米淀粉35 g.L-1,氮源为尿素3.0 g.L-1。培养基优化后MBF11的发酵液对高岭土悬浮液絮凝率达到98.2%。  相似文献   

5.
【目的】确定番茄内生放线菌Fq24的最佳发酵液培养基配方和最佳发酵条件。【方法】通过测定Fq24菌株发酵液对灰葡萄孢的抑菌作用,研究了Fq24菌株在不同发酵培养基、培养时间、接种量、装液量、起始pH、培养温度、碳源、氮源条件下的生长情况及其代谢物活性,以确定其最佳发酵条件。【结果】Fq24发酵液培养基的最适配方为:葡萄糖20 g,黄豆饼粉20 g,玉米面30 g,淀粉10 g,牛肉膏1 g,KNO32 g,NaCl 2 g,MgSO40.3 g,CaCO36g,KH2PO40.2 g,H2O 1 000 mL;筛选出的最佳发酵条件为:培养时间7 d,接种量10%,500 mL容量瓶中装液量100mL,起始pH值6.5,培养温度28℃,碳、氮源分别为葡萄糖和KNO3。【结论】在最佳发酵液培养基和培养条件下,Fq24菌株发酵液对灰葡萄孢的抑菌率可达到92.1%。  相似文献   

6.
灵芝液体深层发酵菌株筛选与培养基优化的研究   总被引:1,自引:0,他引:1  
从灵芝菌种中筛选出多糖产量高、生长快的紫灵芝菌株,研究了不同氮源、碳源及金属离子对紫灵芝产多糖的影响。结果表明,以2%的蔗糖为碳源、0.2%的豆饼粉为氮源、0.2%的FeSO4为培养基可获得较高多糖。发酵罐放大试验表明,采用同样的培养基,每100mL发酵液胞外粗多糖含量可高达181.7mg,每100mL发酵液菌丝体含量可高达151.0mg,发酵过程中pH值的变化比较缓和,相对于摇瓶生长,发酵生产可获得更多的灵芝多糖。  相似文献   

7.
香兰素是食品工业中应用最广泛的香料之一。试验对发酵产生香兰素的朱红秘孔菌Pycnoporuscinnabarinus的种子培养基和发酵培养基进行优化,选出可以促进菌体细胞快速生长的果糖、酵母粉作为种子培养基的碳源、氮源,经过3 d的培养,使朱红秘孔菌的生物量提高到0.726 g.L-1。优化发酵培养基,选择出最有利于香兰素生成的碳源、氮源及无机盐,优化后香兰素在发酵液中的浓度达到0.403 g.L-1,摩尔转化率为28.8%。  相似文献   

8.
为了进一步提高放线菌Z139菌株发酵液抑菌活性物质的产量,以放线菌Z139发酵液抑菌活性为主要指标,研究了发酵培养基中不同碳源、氮源、C/N、无机盐等营养因子,以及接种量、装液量、初始pH、发酵时间等非营养因子对Z139菌株发酵液生物活性的影响。对烟草赤星病菌和苹果腐烂病菌的抑菌测定结果表明,发酵培养基最佳碳源为玉米粉,氮源为蛋白胨,适宜C/N为4.13∶1,添加无机盐的种类为硫酸镁和氯化钠时,放线菌Z139发酵液抑菌活性较高。正交试验结果表明,发酵培养基各组分的最佳配比(质量分数)为:玉米粉1.0%,蛋白胨1.0%,硫酸镁0.06%,氯化钠0.1%。Z139菌株发酵的优化条件为:初始pH6.0~7.0,发酵时间72 h(发酵液pH 8.5),接种量体积分数6%,装液量240 mL/L。  相似文献   

9.
对芝麻镰孢茎枯病病原菌(Fusarium oxysporum)的生物学特性进行了研究.结果表明:病菌菌丝在供试10种培养基上均能良好生长,在查氏琼脂培养基和液体培养基上生长较快;菌丝生长温度范围10~30℃,最适温度25℃;最适pH值为7;光照抑制菌丝生长.菌丝致死温度为64%10min.病原菌在VBC培养基上易于产孢,产生的孢子多为大型分生孢子,而在CA培养基上产生小型分生孢子较多;产孢温度范围10~30℃,最适30℃,最适pH值为9.分生孢子萌发适宜碳源为1%木糖溶液,适宜氮源为0.01%脲溶液;分生孢子在10~30%温度问均能萌发,最适25℃;萌发最适pH值为8,光照抑制孢子萌发,分生孢子致死温度52℃10min.  相似文献   

10.
黄麻链霉菌NF0919菌株发酵培养基的优化   总被引:1,自引:0,他引:1  
以黄麻链霉菌(Streptomyces corchorusii)NF0919菌株发酵液对草莓炭疽病菌(Glomerella cingulata)的抑菌率为效价指标。通过单因素试验筛选出NF0919菌株发酵用最佳的碳源、无机盐和氮源,在此基础之上,再通过正交试验和二次通用旋转组合设计试验,对NF0919菌株发酵培养基进行优化。结果表明:与发酵初始培养基相比,优化后得到的最佳培养基发酵液对草莓炭疽病菌的相对毒力效价提高了13.77倍。筛选得到的最佳发酵培养基组成为:10.2%马铃薯淀粉、2.6%棉籽蛋白、0.1%CaCO3、0.05%K2HPO4、0.05%MgSO4。  相似文献   

11.
以菊芋为原料发酵生产甘露醇的研究   总被引:4,自引:1,他引:3  
研究7株乳酸菌发酵菊芋生产甘露醇的能力.其中,有5株乳酸菌无须添加氮源和无机盐,能够有效转化40 g/L糖化菊芋汁中的果糖合成甘露醇.进一步发酵还原糖浓度为169 g/L的浓缩汁时,通过比较甘露醇产量和还原糖利用率,选择了一株能有效转化糖化菊芋汁中果糖合成甘露醇的菌株M-1,可产出80 g/L甘露醇.分析碳源比例对M-1发酵的影响,培养基中果糖和葡萄糖的浓度比为4∶1时,M-1产出甘露醇73.8 g/L,还原糖转化率达74.10 %.进一步证明糖化菊芋汁的糖成分满足需要,可作为甘露醇生产的合适发酵原料.  相似文献   

12.
洒威  李纲  焦迎春  邵宗圆  张霞 《安徽农业科学》2013,41(13):5875-5877,5944
[目的]采用响应面法优化JMH48产絮凝剂培养基。[方法]从活性污泥中分离得到一株具有高絮凝活性的细菌,简称JMH48,采用单因素试验、响应面设计试验对培养基进行了优化,分别考察了培养基中的碳源、氮源的种类及其浓度对JMH48絮凝效果的影响。培养基的优化采用中心组合响应面分析法,建立数学模型回归分析,模型评价,最后进行验证试验。[结果]最佳碳源和氮源分别为葡萄糖和蛋白胨,在未离心处理下,最佳碳、氮源浓度分别为20.11、0.52 g/L,在此条件下絮凝菌的絮凝率最高可达85%以上;在离心处理下,最佳碳、氮源浓度分别为22.98、0.53 g/L,在此条件下絮凝菌的絮凝率最高可达93%以上。[结论]该研究为基于微生物絮凝剂的环境修复提供了理论依据。  相似文献   

13.
王富科 《安徽农业科学》2011,39(35):21764-21767
[目的]研究利用马铃薯粉丝废液发酵生产天然红色素的工艺技术。[方法]由市场销售的优质红曲米中分离出产红色素的红曲霉菌株,经过液体扩大培养后,以马铃薯粉丝生产废液为主要培养基,适当补加营养盐,采用摇瓶振荡发酵培养生产红曲色素。[结果]以马铃薯粉丝废液适当补加营养盐配制发酵培养基,调整其pH为5.8,培养温度控制在30℃,振荡培养5 d生产红色素是完全可行的。发酵液pH值为5.8时,最适宜红曲霉的生长。红曲霉的适宜生长温度为25~30℃3,0℃时其红色素产量最高。适宜红曲霉发酵培养的振荡器转速为160~200 r/min。红曲色素产量在发酵开始后的第5天达高峰。[结论]马铃薯粉丝废液无需再经过特殊处理即可直接用于发酵生产红曲色素,简化生产工艺和缩短生产周期,大大降低了天然红色素的生产费。  相似文献   

14.
利用啤酒废水制备微生物絮凝剂研究   总被引:9,自引:5,他引:4  
[目的]优化絮凝剂产生菌培养条件,以期获得价廉、高效的絮凝剂。[方法]从某污水处理厂的活性污泥中筛选得到了一株稳定高效的微生物絮凝剂产生菌127号菌种,采用啤酒废水作为廉价培养基,对絮凝剂产生菌127号菌种进行培养,优化其培养条件,考察外加碳源、氮源、培养基pH值、培养时间等因素对菌株絮凝效果的影响。[结果]将啤酒废水稀释10倍后,BOD5为7880 mg/L,无需另外添加碳源,添加尿素1.0 g/L,总氮约为540 mg/L,最佳培养基的初始pH值为5.0,最佳培养时间为48 h,絮凝效果最好,达96.8%。[结论]啤酒废水中含有丰富的营养物质,直接利用啤酒废水作为培养基絮凝剂产生菌127号菌种进行培养,其高岭土悬液絮凝率也达到88.2%,可以大大降低培养成本。  相似文献   

15.
李利  陈福生 《安徽农业科学》2012,(30):14956-14957,14960
[目的]筛选出高产γ-氨基丁酸(γ-aminobutyric acid,GABA)的红曲菌菌株,并研究其最佳发酵条件。[方法]通过液态发酵,从实验室保藏的23株红曲菌菌株中筛选出GABA产量较高的菌株,研究不同碳源、氮源及Ca2+、Mn2+、乙醇等其他添加成分对其产GABA的影响,并利用正交试验优化发酵培养基的组成。[结果]筛选出GABA产量较高的菌株M-4,发现葡萄糖和谷氨酸单钠盐有利于GABA的产生,且当培养基组成为大米粉3%、葡萄糖4%、谷氨酸单钠盐2%、KH2PO40.15%、MgSO4.7H2O 0.10%时,M-4的GABA产量达474 mg/L,为优化前的4.6倍。[结论]该研究可为开发富含GABA的红曲保健品提供参考。  相似文献   

16.
[目的]构建了负责运输苏氨酸至胞外的转运蛋白的关键基因rhtB过表达的苏氨酸发酵菌M122,考察不同的碳源、氮源及pH对该重组菌产L-苏氨酸的影响。[方法]选用不同的碳、氮源对L-苏氨酸生产菌株的发酵过程进行分析,对发酵培养基的碳、氮源及pH进行优化。[结果]定向改造后苏氨酸发酵菌对营养物质的利用效率增加,使用蔗糖作为碳源发酵时,摇床培养L-苏氨酸产量为28.1g/L;以(NH4)2SO4或酵母粉作为氮源发酵时,L-苏氨酸产量分别为27.8和28.2g/L,均优于使用其他氮源时苏氨酸的产量。对发酵的最适pH研究表明,中性条件下更有利于菌体的生长和L-苏氨酸的产生。[结论]确定了苏氨酸发酵菌M122的最佳碳源为蔗糖,最佳氮源为(NH4)2SO4或酵母粉,最适pH为7.0。  相似文献   

17.
付文杰  张莎莎 《安徽农业科学》2007,35(19):5668-5669
[目的]为了获得培养茶新菇的最优碳源、氮源、无机盐配比和最适培养条件。[方法]通过对茶新菇菌的液体深层发酵培养基组分中的碳源、氮源、无机盐的种类进行选择性试验分析,寻找茶新菇液体发酵培养基的最佳组合。[结果]单因子试验证明最优碳源为蔗糖、最优氮源为蛋白胨、最优无机盐为KH2PO4;其中碳源浓度对菌丝体产量的影响最大,其次是氮源,最小是无机盐,组分配方的最佳组合是:蔗糖3%、蛋白胨1%、KH2PO40.10%,最适培养条件为25℃、转速150 r/min、接种量5%、摇床振荡培养4 d。[结论]在最优组分配比和最适培养条件下,茶薪菇菌丝体生物量最高,该研究为其高效生产提供了定量的理论数据。  相似文献   

18.
真姬菇液体培养基的正交试验研究   总被引:6,自引:0,他引:6  
采用深层培养方法,筛选出较优的碳源、氮源,在此基础上设计3因素4水平的正交试验,筛选出真姬菇最适液体培养基为马铃薯20%、红糖2%、酵母粉0.2%、MgSO40.05%、KH2PO40.15%。  相似文献   

19.
张杰  顾泽峰  刘雪峰 《安徽农业科学》2014,(5):1304-1305,1392
[目的]对蛹虫草菌丝生长条件进行优化,为发酵工业中液体深层发酵生产蛹虫草的药用有效成分提供参考。[方法]通过单因素试验,改变碳源、氮源、接种菌龄、培养基起始pH、培养周期、培养温度、摇床速度、接种量和装液量来确定蛹虫草菌丝生长最佳条件。[结果]最佳发酵条件为:碳源为蔗糖,浓度为2%,氮源为蛋白胨,浓度为1%,接种菌龄为36h,培养基起始pH值为6.5,培养周期为6d,培养温度为24℃,摇床速度为200r/min,在250ml锥形瓶中的装液量为150ml;在此条件下,菌丝体干重最大。[结论]该方法获得了蛹虫草C-7发酵菌丝体的最佳培养条件,为蛹虫草的进一步开发利用提供依据。  相似文献   

20.
二株微生物絮凝剂产生菌的筛选与特性研究   总被引:4,自引:0,他引:4  
从污泥和污水中筛选到2株活性较高的絮凝剂产生菌:415号和YZ-4号菌株,初步鉴定415号菌株为细菌,YZ-4号菌株为放线菌。415号菌株可使浓度为4000mg/L的高岭土在5min内沉降92.5%,YZ-4菌株则达98.7%。YZ-4菌株在以蔗糖为碳源、硝酸钠为氮源生长时产絮凝活性最高;而415号菌株则以蔗糖为碳源、蛋白胨为氮源时效果较好。415菌株产生的絮凝物质在偏酸性环境下具有较高的絮凝活性,而YZ-4菌株却在较大的pH范围内均具有高的絮凝活性,显示出良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号