首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
应用响应面法优化复合酶提取绣球菌多糖工艺   总被引:1,自引:1,他引:0  
采用纤维素酶、果胶酶和木瓜蛋白酶3种酶复合提取绣球菌多糖,在酶解p H值、酶解时间、酶解温度、液料比等单因素试验的基础上,采用响应面法分析优化工艺参数。结果表明,在添加果胶酶0.4%、纤维素酶0.6%、木瓜蛋白酶0.6%时最佳提取工艺为:酶解p H值4.16、酶解时间3.41 h、酶解温度53.73℃、液料比15.63∶1。在此提取条件下多糖得率达到14.33%。  相似文献   

2.
【目的】探索黑木耳黑色素的高效提取工艺,为促进黑木耳黑色素功能产品的开发和应用提供参考。【方法】以黑木耳子实体干品为材料,设计纤维素酶、果胶酶、木瓜蛋白酶用量单因素试验,在此基础上,再进行3种酶质量比、复合酶添加量、酶解pH、液料比、酶解温度和酶解时间的单因素试验,然后采用响应面法对复合酶提取黑木耳黑色素的工艺条件进行优化,并对优化后的黑木耳黑色素进行鉴定,分析其对DPPH、ABTS和OH自由基的体外抗氧化活性。【结果】响应面法优化复合酶提取黑木耳黑色素的最佳参数为纤维素酶/果胶酶/木瓜蛋白酶的质量比1∶3∶0,复合酶添加量25 mg/g,酶解pH 6.0,液(mL)料(g)比20∶1,酶解温度33 ℃,酶解时间60 min,在此条件下黑色素得率为13.80%。在相同酶添加量下,其提取得率分别是纤维素酶、果胶酶和木瓜蛋白酶单酶处理组的2.03,1.90和1.36倍。复合酶提取获得的黑木耳黑色素对DPPH和ABTS自由基的清除效果较好,其EC50值分别为1.62和0.99 mg/mL。【结论】用复合酶提取黑木耳黑色素的得率显著提高,且提取的黑色素具有良好的体外抗氧化活性。  相似文献   

3.
【目的】探明提高人参果出汁率的工艺条件,为人参果果汁的开发应用奠定基础。【方法】采用单因素试验研究果胶酶、混合酶(纤维素酶和半纤维素酶按1∶1混合)及木瓜蛋白酶不同添加量(0.10~0.45 g/L)及其在不同温度(35~65℃)、pH(3~6)及作用时间(25~60 min)条件下对人参果出汁率的影响,并在此基础上采用分段酶解法对人参果汁的提取工艺进行优化。【结果】果胶酶、纤维素酶和半纤维素酶混合酶、木瓜蛋白酶添加量分别为0.20 g/L、0.25 g/L、0.35 g/L,酶解温度为50℃,水解pH值为5.0,水解时间为45 min,采用果胶酶+混合酶的分段处理方式为佳。分段酶解法制备人参果汁的最佳工艺条件:pH 5+水浴温度45℃+0.20 g/L果胶酶酶解35 min,保持体系pH 5+水浴温度55℃+0.25 g/L混合酶酶解45 min,经此方法处理人参果出汁率达92.5%。【结论】按照果胶酶+混合酶的分段水解方式能显著改善人参果果汁出汁率,对人参果的开发利用具有实际指导意义。  相似文献   

4.
响应面法优化无花果果汁酶解提取工艺研究   总被引:1,自引:0,他引:1  
【目的】研究双酶法提取无花果汁的最佳工艺参数,为制备无花果汁、酿造无花果酒奠定基础。【方法】以无花果为材料,以出汁率为考察指标,通过单因素试验和响应面试验,研究纤维素酶和果胶酶添加量、酶解温度、酶解时间4个因素及其交互作用对无花果岀汁率的影响,利用响应面试验结果建立回归方程,并对回归方程进行显著性和方差分析,得到无花果果汁酶解提取最佳工艺参数并进行试验验证。【结果】通过单因素试验得到的无花果果汁最佳酶解提取条件为:纤维素酶添加量1.5%(质量分数,下同),果胶酶添加量0.3%,酶解温度55℃,酶解时间90min。根据单因素试验结果进行响应面试验分析得出,无花果果汁的最佳酶解提取工艺条件为:纤维素酶添加量1.56%,果胶酶添加量0.28%,酶解温度53℃,酶解时间90min;在此条件下无花果的岀汁率为72.15%,与理论值(73.99%)基本吻合,且比未处理无花果出汁率提高了75.46%。纤维素酶添加量与酶解温度和酶解时间、果胶酶添加量与酶解温度和酶解时间、酶解温度与酶解时间的交互作用均可在较大程度上影响无花果的岀汁率。【结论】通过响应面试验得到了双酶法提取无花果汁的最佳工艺参数,该工艺可以大幅提高无花果出汁率。  相似文献   

5.
研究复合酶提取核桃油的工艺条件。以果胶酶和纤维素酶组成复合酶,并辅助以超声波来提取核桃油,经单因素试验和正交试验优化提取条件。研究结果表明,果胶酶∶纤维素酶的质量比为1∶1、酶添加量1.4%、酶解pH值为6.0、超声酶解温度55℃、酶解时间50 min、超声功率90 W,核桃提油率可达54%。  相似文献   

6.
选用大别山产苦荆茶鲜叶为材料,添加外源纤维素酶和果胶酶提取茶汁,分析了单一酶和不同配比的组合酶对茶汁提取的效果;采用组合酶提取方法,利用L9(34)正交设计试验研究了提取的最适工艺条件.结果表明,外加酶对茶汁提取率影响较大,其影响大小的顺序为组合酶>果胶酶>纤维素酶;单一用纤维素酶和果胶酶作外加酶,达到最适提取效果时酶的添加量分别为0.12%和0.08%;组合酶(0.08%果胶酶 0.08%纤维素酶)提取效果最好,最适提取工艺条件为温度40℃、pH值5.5、酶解时间3h.  相似文献   

7.
齐权 《安徽农业科学》2012,(12):7410-7413
[目的]研究水酶法提取南瓜籽油的最佳工艺条件。[方法]分别采用单因素试验和正交试验确定南瓜籽油热处理工艺、酶解工艺的最佳条件,并试验纤维素酶和果胶酶的总添加量及添加比例对南瓜籽油提取率的影响。[结果]热处理工艺的最佳条件为热处理温度90℃,热处理时间10 min。酶解工艺的最佳条件为酶解时间6 h,酶解温度50℃,酶解pH 7,蛋白酶添加量3%,料水比1∶5;在该条件下,南瓜籽油的提取率为83.32%。维素酶和果胶酶的总添加量为2%,最佳添加比例为2∶1。[结论]水酶法工艺条件温和,适合油料作物油脂的提取。  相似文献   

8.
[目的]采用水酶法提取扁桃仁油.[方法]采用单因素试验和正交试验,研究单一酶和复合酶种类及浓度、酶解时间、酶解温度、酶解pH、料液比对出油率的影响.[结果]水酶法提取扁桃仁油的最佳工艺条件为:采用由果胶酶、纤维素酶和木瓜蛋白酶组成的复合酶,酶解温度55℃,酶解时间3h,酶浓度2;,酶解pH7.0、料液比1∶4,在此条件下出油率达77.31;.[结论]单一酶中碱性蛋白酶,复合酶中果胶酶、纤维素酶、木瓜蛋白酶的组合对扁桃仁油的提取率最高;复合酶的出油率比单一酶高.  相似文献   

9.
为了开辟海藻渣废物利用的新途径,以工厂中提取海藻酸后产生的废渣为原料,采用浓盐酸预处理和纤维素酶、果胶酶、木聚糖酶、木瓜蛋白酶复合酶酶解,制得海藻液肥,讨论了不同的酶解条件对海藻渣提取率的影响。结果表明:较为理想的酶解条件为酶用量为9(相对于海藻渣的质量比),酶配方为纤维素酶50%,果胶酶30%,木聚糖酶10%,木瓜蛋白酶10%,pH7.0,温度40℃,酶解时间24h时海藻渣的提取率为46.21%。  相似文献   

10.
采用Box-Benhnken中心组合试验设计优化荔枝干可溶性固形物双酶提取工艺,建立了包括果胶酶添加量、纤维素酶添加量和酶解时间的三因素回归模型.经回归模型分析并结合验证试验,确定以荔枝干果肉(含水量23.84%)为原料的最佳提取工艺条件为:果胶酶添加量3400 U/g、纤维素酶添加量550 U/g、酶解温度50℃、酶解pH值4.68、酶解时间2h,在该条件下荔枝干可溶性固形物提取率可达75.29%.  相似文献   

11.
黄秀香 《安徽农业科学》2012,40(24):12014-12016
[目的]研究复合酶超声波法提取半边莲生物碱的最佳工艺条件。[方法]以乙醇水溶液为提取剂,采用单因素试验及L16(45)正交试验考察纤维素酶用量、果胶酶用量、酶解温度、pH值和乙醇浓度等5个因素对半边莲中生物碱提取效果的影响。[结果]最佳提取工艺为:纤维素酶用量为24 mg,果胶酶用量为45 mg,酶解时间为30 min,pH值为5.4,乙醇浓度为70%;在此条件下,生物碱的含量为0.860%。[结论]该方法提取率高、稳定性好,可用于半边莲生物碱的提取。  相似文献   

12.
[目的]优化复合酶法提取南瓜多糖的工艺条件,研究南瓜多糖的抗氧化性。[方法]采用单因素试验设计研究了不同提取时间、温度、料液比、pH值对南瓜多糖提取率的影响,并通过正交试验确定了提取南瓜多糖的最佳复合酶配比和最佳提取条件。采用水杨酸法检测南瓜多糖对羟基自由基(.OH)和改进的邻苯酚自氧化法检测其对超氧阴离子自由基(O-2)的清除效果。[结果]当纤维素酶的浓度为1.0%、果胶酶为1.5%、木瓜蛋白酶为1.0%时,以及温度为40℃、pH=4.6、料液比为1∶30、提取时间为30 m in的条件下南瓜多糖的提取率最高;南瓜多糖对.OH具有较好的清除效果,对O-2有部分清除作用。[结论]该研究为南瓜多糖的研究及应用提供了基础资料。  相似文献   

13.
纤维素酶提取工艺及酶学性质的研究   总被引:3,自引:0,他引:3  
[目的]探讨纤维素酶的最佳提取工艺和最佳反应条件。[方法]以里氏木霉Rut C-30为发酵菌种,在30℃、摇床转速170 r/min条件下培养8 d,发酵生产纤维素酶,用盐析技术对粗酶液进行分离纯化,通过正交实验法探讨了纤维素酶的提取工艺条件。并以羧甲基纤维素钠酶活力为指标,对该酶的最佳反应条件和稳定性进行了研究。[结果]纤维素酶的最佳提取条件是:提取时间为16 h、盐析饱和度为70%、pH值为4.8。纤维素酶的最佳反应条件是:pH值为4.8、温度为60℃。酶在pH 3.6~7.0时较稳定,在78℃保温30 min下的残留酶活为50%。[结论]该研究为酶的工业化生产提供参考数据。  相似文献   

14.
严红光  程江华 《安徽农业科学》2011,39(31):19617-19618,19620
[目的]探讨果胶酶澄清金秋梨果酒的最佳工艺条件。[方法]金秋梨榨汁后通过发酵获得金秋梨酒,然后添加不同量的果胶酶,通过单因子试验研究果胶酶添加量、不同酶解温度、不同酶解时间和不同酶解处理pH值对金秋梨酒澄清的影响,通过正交试验确定果胶酶澄清金秋梨果酒的最佳工艺条件,并探讨果胶酶澄清避免金秋梨果酒后浑浊发生的可能性。[结果]应用果胶酶澄清金秋梨果酒的最佳工艺条件为:温度30℃、添加0.2 ml/L果胶酶、酶解酸度为3.5、酶解时间90 min,该条件下澄清后果酒透光率为92.1%。澄清后获得的酒呈亮金黄色、透明清澈,具有金秋梨自然色泽、口味纯正、营养丰富。[结论]利用果胶酶澄清能较好地避免金秋梨果酒后浑浊的发生,因而果胶酶用于澄清金秋梨果酒具有应用前景。  相似文献   

15.
郑典元  丁占平  夏依依 《安徽农业科学》2011,39(21):13067-13069
[目的]寻找复合酶法制造褐藻淀粉的最佳工艺条件,以提高海带原料的利用率。[方法]试验组采用酶提法从海带中提取褐藻淀粉,对照组采用水提法。酶提法又分为分步加酶[先加果胶酶(pH4.2,50℃,2h),然后加木瓜蛋白酶(pH6.0,55℃,2h)]与同步加酶(pH5.5,55℃,4h)2种方法,通过正交试验比较2种方法提取褐藻淀粉的效果。[结果]分步加酶法比同步加酶法褐藻淀粉和总糖的提取率及多糖含量都有显著提高。分步加酶法提取的褐藻淀粉、总糖的提取率分别为1.98%、9.83%,比同步加酶法分别提高了35.33%、32.46%;分步加酶法提取的总糖及褐藻淀粉含量分别为46.26%和51.02%,比同步加酶法分别提高了3.26%和4.38%。分步加酶法的最佳提取条件是用0.10mol/LHCl溶解海带粉,试样与浸提液用量比为1:20(g:ml),试样与酶用量比为1:30(g:mg)。[结论]复合酶法是提取褐藻淀粉的较好方法,尤其是分步加酶法可以提高褐藻淀粉提取率和含量。  相似文献   

16.
复合酶法提取野木瓜汁的工艺研究   总被引:1,自引:0,他引:1  
[目的]研究复合酶法提取野木瓜汁的工艺。[方法]以野木瓜为原料,采用复合酶法提取野木瓜汁。[结果]确定了果胶酶与纤维素酶的最佳添加比例为1:6。复合酶提取野木瓜汁的最佳酶解工艺条件为:复合酶添加量1.0%,酶解温度45℃,pH值4.0,酶解时间2.5h,在此最佳条件下,野木瓜出汁率可达56.7%,比空白样的出汁率13.7%多出了43.0个百分点。[结论]找到了一种提取野木瓜汁的方法。  相似文献   

17.
张明 《安徽农业科学》2010,38(26):14352-14353
[目的]优化大青叶多糖的提取工艺。[方法]以山东大青叶为材料,采用复合酶(纤维素酶、果胶酶、胰蛋白酶)水解、乙醇沉淀法提取其中的多糖,并通过正交试验确定复合酶的最佳配比及浸提温度、浸提时间、pH值等对多糖得率的影响。[结果]复合酶的最佳配比为:纤维素酶1.5%,果胶酶2.0%,胰蛋白酶1.5%;最佳反应条件为温度40℃,pH值5,时间90min,此条件下大青叶多糖的平均得率为18.24%。[结论]该研究确定了复合酶法提取大青叶多糖的最佳工艺。  相似文献   

18.
复合酶法提取金针菇多糖及光谱分析   总被引:1,自引:0,他引:1  
研究了复合酶法提取金针菇(Flammulina velutipes)多糖的最佳工艺条件,并对金针菇多糖进行了光谱分析.采用木瓜蛋白酶、纤维素酶复合处理,对加酶质量比、酶解温度、pH、酶解时间4个因素对多糖提取率的影响进行了正交试验.确定了复合酶法提取金针菇多糖的最佳工艺条件为酶解温度60℃,复合酶添加量0.5%,加酶质量比(木瓜蛋白酶:纤维素酶)2∶1,pH 6.0,酶解时间2h,此条件下多糖提取率可达9.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号