首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
[目的]克隆苹果(Malus domestica Borkh.)异戊烯基转移酶(isopentenyltransferase,IPT)基因家族MdIPTs,分析MdIPT5a的生理功能,为深入研究MdIPTs在苹果细胞分裂素生物合成途径中的作用和基因的遗传转化提供理论依据.[方法]以‘富士’苹果为试材,利用RACE和苹果基因组信息克隆MdIPTs;利用洋葱表皮和拟南芥原生质体的瞬时表达研究MdIPT5a的亚细胞定位;通过农杆菌介导法遗传转化‘W38’烟草(Nicotiana tabacum cv.Wisconsin 38)过量表达MdIPT5a,RT-PCR鉴定转基因烟草.[结果]克隆了10个MdIPTs的cDNA 序列,其中7个编码细胞分裂素生物合成主要途径中的腺苷-IPTs,具有N端的保守结构域GxxGxGK[S,T]序列,分别位于苹果第13、16、3、11、13、16、6号染色体上,命名为MdIPT1a、MdIPT1b、MdIPT3a、MdIPT3b、MdIPT5a、MdIPT5b和MdIPT7a,均无内含子,编码284-370个氨基酸.MdIPT5a-GFP融合蛋白定位于细胞质中,但不定位于质体内.过量表达MdIPT5a的转基因烟草组培苗生根困难、叶片和不定芽增多.[结论]苹果中腺苷-异戊烯基转移酶基因具有成对高度同源现象,与苹果17条染色体起源于9条始祖染色体的同源起源学说相一致,MdIPT5a具有催化合成细胞分裂素的功能.  相似文献   

2.
【目的】分离苹果生长素响应因子MdARF5(Auxin Response Factor 5),分析其对生长素的响应,鉴定其在调节花青苷合成过程中的作用,揭示MdARF5的生物学功能,为进一步研究生长素对花青苷的调节提供理论依据。【方法】以‘嘎拉’苹果(Malus×domestica ‘Royal Gala’)为材料,利用同源克隆技术,克隆得到一个ARF(Auxin Response Factor)转录因子,并将其命名为MdARF5。利用MEGA5.0软件构建多物种间系统进化树。通过农杆菌介导的遗传转化获得转基因苹果愈伤组织。比较野生型和转基因苹果愈伤组织花青苷积累的差异。利用烟草叶片瞬时转化试验,分析MdARF5对MdMYB1的转录调控。【结果】克隆获得苹果生长素响应因子MdARF5(序列号:MDP0000143749),该基因CDS为2 691 bp,编码含有896个氨基酸的蛋白。系统进化树分析表明,苹果MdARF5与梨PbARF5同源性最高。基因表达分析显示,该基因响应生长素处理,并且与花青苷合成相关基因表现出相反的表达模式。在苹果愈伤组织中超表达MdARF5,其花青苷积累较野生型显著降低,表明MdARF5在调控花青苷积累过程中发挥重要作用。对苹果MdMYB1启动子序列进行分析,发现其序列包含一个MdARF5的结合位点。烟草瞬时表达试验显示,MdARF5能够抑制MdMYB1的表达。【结论】推测苹果MdARF5可能通过直接抑制MdMYB1的表达负调节花青苷的积累。  相似文献   

3.
苹果绵肉与脆肉株系果实质地差异的分子机理   总被引:1,自引:0,他引:1  
【目的】研究新疆红肉苹果(Malus sieversii脆2号’ f. neidzwetzkyana)与‘富士’苹果品种(M. domestica cv. Fuji)杂交后代绵/脆肉株系果实质地差异的分子机理,旨在为进一步完善功能型苹果育种的理论与技术体系提供科学依据。【方法】以新疆红肉苹果杂交后代‘红绵2号’和‘红脆2号’不同发育时期的果实为试材,检测乙烯释放量、果实硬度与脆度以及ACS1等4个乙烯生物合成基因和PG等30个果实软化相关基因的相对表达量,观察其变化。【结果】‘红绵2号’和‘红脆2号’苹果果实发育期间的硬度和脆度均呈下降趋势,但‘红脆2号’各时期果实硬度和脆度均明显高于‘红绵2号’。‘红绵2号’花后120 d乙烯释放速率明显上升,并出现明显的乙烯释放峰;而‘红脆2号’花后120 d乙烯释放速率上升不明显,且无明显的乙烯释放峰。‘红苹果果实各时期的ACS1、ACS3、ACO1ACO2 4个乙烯生物合成相关基因表达量均明显低于‘红绵2号’;4个乙烯生物合成相关基因的表达模式存在明显差异,其中‘红绵2号’ACS1、ACO1ACO2三个基因在果实发育后期的表达量均在94%以上,而ACS3a在果实发育前、后期表达量分别占50%,表现为组成型表达。所检测的与果实软化相关的30个基因表达的时间顺序存在明显差异,其中PL、AF1、EG2XET1等15个基因主要在果实发育前期表达,PG、AF3、XET2、XET10XET11 5个基因主要在果实发育后期表达,基因表达量均占总表达量的70%以上;除PLAF1等6个基因外,‘红脆2号’PG等24个基因的总表达量均极显著低于‘红绵2号’。【结论】果实发育后期乙烯释放高峰的到来以及果实发育前、后期不同乙烯生物合成与果实软化相关基因的上调表达,是导致‘红绵2号’果实在采收前就已软化变绵及其与‘红脆2号’质地差异的主要原因。  相似文献   

4.
【目的】从华东葡萄抗白粉病株系‘白河-35-1’中克隆VpMYBR1基因,并进行基因表达与功能分析,为揭示抗白粉病机制提供理论依据。【方法】采用RT-PCR 和RACE技术克隆VpMYBR1 基因cDNA全长序列,并利用半定量和定量RT-PCR技术进行不同器官和不同处理后的表达分析;通过花序浸染法转化拟南芥,对转基因及未转化对照植株抗白粉病鉴定、台盼蓝染色和抗病标记基因表达分析研究基因功能。【结果】VpMYBR1基因cDNA序列全长539 bp,有228 bp的完整开放阅读框,编码75个氨基酸,包含1个Sant/myb结构域,GenBank 登录号为HQ284197;VpMYBR1基因在‘白河-35-1’不同器官中均有表达,且叶中的表达量最强,花序和果实中表达量最弱;VpMYBR1基因的表达在抗白粉病的华东葡萄‘白河-35-1’与感病的‘湖南-1’、抗病的毛葡萄‘商-24’叶片接种白粉菌6 h后达到最大值,而且在‘白河-35-1’中最高,达接种前的28倍。同样,VpMYBR1基因在SA、MeJA处理后的‘白河-35-1’中的表达量明显高于‘商-24’和‘湖南-1’;将VpMYBR1基因导入野生型拟南芥,提高了转基因株系的抗病性;台盼蓝染色和抗病标记基因表达分析表明,该基因可能通过过敏反应(hypersensitive reaction, HR)提高了转基因株系的抗病性。【结论】从华东葡萄克隆了VpMYBR1基因,基因表达及功能分析表明,该基因具有提高转基因植株白粉病抗性的功能。  相似文献   

5.
猕猴桃果实特异表达ipt基因的构建   总被引:3,自引:0,他引:3  
异戊烯基转移酶(ipt)基因是细胞分裂素生物合成关键酶.为保证/ipt基因仅在猕猴桃开花授粉之后的幼果期开始有效表达,作者以pUC119质粒为克隆载体,将猕猴桃果实特异表达的猕猴桃素(Actinidin)因启动子与ipt编码基因连接构建成猕猴桃果实特异表达ipt基因.  相似文献   

6.
盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响   总被引:14,自引:4,他引:10  
【目的】研究100 mmol•L-1 NaCl胁迫下,葡萄酿酒品种‘赤霞珠’、砧木‘5BB’ 和砧穗组合苗‘赤霞珠/5BB’叶片细胞解剖结构和光合特性,为葡萄品种、砧木及砧穗组合苗耐盐性的筛选提供理论依据和技术方案。【方法】采用盆栽方法,当葡萄苗生长到高度约60 cm时,用100 mmol•L-1 NaCl 处理30 d,随后测定叶片的叶绿素含量、光合作用参数及叶绿素荧光参数等指标,并用显微和透射电镜观察其细胞结构特征。【结果】100 mmol•L-1NaCl胁迫下,葡萄叶片表皮细胞、栅栏组织和海绵组织厚度增加,栅栏组织/海绵组织比降低;叶绿体长宽分别扩大1.3-1.5倍和1.3-2.0倍,类囊体肿胀变大;叶绿素含量降低,特别是叶绿素b(Chl b)下降明显;叶片光系统Ⅱ(PSII)潜在活性(Fv/Fo)、原初光能转换效率(Fv/Fm)和叶片净光合速率(Pn)均显著降低。3种类型苗木对NaCl胁迫的反应不同,100 mmol•L-1 NaCl对砧木‘5BB’叶片细胞和叶绿体的结构、叶绿素含量和光合速率的影响程度最小,其次为砧穗组合苗‘赤霞珠/5BB’,而对品种‘赤霞珠’的影响最大。【结论】100 mmol•L-1 NaCl胁迫下,葡萄叶片厚度增加,叶绿素含量降低,最终导致PSII潜在活性中心受损,光能转化效率和净光合速率明显降低。葡萄砧木‘5BB’有较强的耐盐能力,可一定程度提高酿酒葡萄‘赤霞珠’的耐盐能力。  相似文献   

7.
‘乔纳金’苹果及其脆肉芽变果实质地发育机理   总被引:1,自引:1,他引:0  
【目的】研究‘乔纳金’苹果及其脆肉芽变果实发育后期硬度与脆度的变化、果实香气成分含量以及果实软化相关基因的表达差异,旨在为全面认识该脆肉芽变的发育机理提供科学依据,并为进一步丰富苹果果实质地品质发育的理论体系提供基本资料。【方法】以‘乔纳金’苹果及其脆肉芽变苹果发育后期的果实为试材,检测果实硬度、脆度、香气成分含量以及乙烯生物合成基因ACO、ACS和果实软化有关基因PG、PME、β-Gal、α-L-Af、XET、AM、LOX及β-xyl的表达量。【结果】‘乔纳金’苹果及其脆肉芽变果实发育后期的果实硬度与脆度整体均呈下降趋势,其中在采前50-35 d有个快速下降过程,但脆肉芽变的果实硬度与脆度均显著高于‘乔纳金’;‘乔纳金’苹果酯类化合物的种类数与含量分别是其脆肉芽变的1.5倍和1.2倍,而醇类和醛类化合物含量分别仅是其脆肉芽变的15.1%和14.3%;‘乔纳金’苹果ACO基因表达量前后变化很大,在花后120 d有一个明显的表达峰,花后113-120 d表达量(2 995.8)占总表达量(3 039.6)的98.6%,而‘乔纳金’硬肉芽变果实ACS和ACO基因表达量前后变化不大,总表达量仅分别相当于‘乔纳金’的73.9%和1.1%,且表达峰均滞后于‘乔纳金’;‘乔纳金’苹果PG及XET等6个基因在花后113-120 d表达量均占总表达量的35%以上,是引起‘乔纳金’苹果果实硬度与脆度快速下降的主要原因,而‘乔纳金’脆肉芽变果实参试的12个基因总表达量(1 021.9)仅是‘乔纳金’(4 399.1)的23.2%,其中PG、α-L-Af、 XET和β-Gal等4个基因表达量分别是‘乔纳金’的12.5%、62.7%、72.6%和75.3%。【结论】‘乔纳金’苹果酯类成分种类多、含量高,而脆肉芽变醇类和醛类成分种类多、含量高;两份材料果实发育后期果实硬度和脆度的差异及其变化可能是ACS、ACO、PG、β-Gal、β-xyl、α-L-Af和 XET等多种基因协同作用的结果,其中ACO、PG、β-Gal和XET是关键基因。  相似文献   

8.
【目的】研究苹果枝条节间长度与内源激素赤霉素(GA)水平及GA合成关键酶基因序列和表达之间的关系,为进一步探索苹果短枝型芽变形成机理及选育新的短枝型苹果品种奠定基础。【方法】以‘长富2号’苹果及其短枝型芽变‘龙富短枝’的枝条和叶片为试材,通过对花后4个时期GA含量的测定及GA合成途径中关键基因的克隆及表达,研究枝条生长过程中GA与枝条节间长度的关系。【结果】在花后80 d,GA含量在非短枝型苹果及其短枝型芽变中差异显著,短枝型芽变品种中GA含量低于非短枝型品种。序列分析表明,GA合成关键酶基因GA20-氧化酶(GA20ox)和贝壳杉烯氧化酶(KO)的cDNA序列在‘龙富短枝’和‘长富2号’中完全一致,无碱基的突变、插入或缺失现象发生。实时荧光定量PCR分析表明,在花后20 d和80 d,GA20ox和 KO的相对表达量在‘龙富短枝’和‘长富2号’之间差异显著,短枝型芽变品种中的相对表达量显著低于非短枝型苹果。【结论】GA含量差异和GA合成关键酶基因差异表达与短枝型苹果枝条节间长度相关联,低GA含量和GA合成关键酶基因的下调表达抑制了苹果枝条的伸长。  相似文献   

9.
【目的】研究不同土壤改良物质对越橘Vaccinium vitis-idaea根际土和非根际土中细胞分裂素[玉米素(Z)、玉米素核苷(ZR)和异戊烯基腺苷(iPA)]含量及年变化规律的影响.【方法】以2年生盆栽越橘为试材,应用"根际微区土壤剥落分离法"收集与根系黏着程度不同的非根际土和根际土样品,用高效液相色谱法测定土壤样品细胞分裂素含量.【结果和结论】不同根域处理的根系分泌物中,玉米秸秆配施氮肥处理(k4)的细胞分裂素含量最高,其他依次为添加玉米秸秆处理(k3)、添加草炭处理(k2)、无添加(k1,对照);不同时期越橘根际土和非根际土中细胞分裂素含量总趋势为ZZRiPA,如k4处理的Z、ZR和iPA平均质量比分别为9.89、9.76和3.57 ng/g,分别比k1(对照)高出67.9%、84.2%和105.6%.越橘根系细胞分裂素含量年变化规律表现为早春时期呈上升趋势,秋末季节含量呈下降趋势,而在早春至秋末之间,根系分泌物含量较高.  相似文献   

10.
以抗病毒植物苋色藜为材料,克隆拟南芥NDR1的同源基因,确定其亚细胞定位及该基因表达和抗病毒特性分析,为转基因抗病育种奠定技术基础。根据苋色藜转录组测序分析结果,采用RT\|PCR克隆获得两个与拟南芥同源的NDR1基因,分别命名为CaNDR1a和CaNDR1b,并通过实时定量PCR分析病毒侵染后基因的表达情况;构建植物瞬时表达载体,发现CaNDR1a和CaNDR1b定位于细胞膜;构建CaNDR1a和CaNDR1b植物表达载体,遗传转化获得转基因烟草,经酶联免疫吸附测定(ELISA)分析T1代植株对烟草花叶病毒(TMV)和黄瓜花叶病毒(CMV)的抗性。生物信息学分析揭示CaNDR1a和CaNDR1b是NDR1的同源基因。CaNDR1a和CaNDR1b在苋色藜接种TMV和CMV后显著上调表达。CaNDR1a和CaNDR1b定位于细胞膜上,并且病毒对CaNDR1a和CaNDR1b的胞内定位没有影响。ELISA结果显示部分转基因株系对TMV和CMV的抗性增加。初步表明CaNDR1a和CaNDR1b是拟南芥NDR1的功能性同源基因,参与植物对病毒的内源免疫反应。  相似文献   

11.
苹果LysM基因家族的生物信息学及表达分析   总被引:1,自引:0,他引:1  
【目的】在苹果全基因组中鉴定LysM,通过基因聚类分析、染色体定位、结构分析以及组织表达分析,为苹果LysM的功能研究和利用奠定基础。【方法】利用已公布的苹果基因组数据库GDR和FEM-IASMA,鉴定苹果LysM基因家族成员,并对其进行编号。MdLysM蛋白氨基酸序列的基本信息通过ExPASy Proteomics Server进行预测,亚细胞定位的预测利用WoLF PSORT进行。采用MEGA5软件构建了进化树。应用Plaza程序绘制基因结构,染色体定位信息取自GMDO,鉴定出的39个基因的染色体定位作图使用MapInspector完成;另外,通过实时荧光定量RT-PCR对各基因的组织表达特性进行分析,差异显著性分析通过SPSS完成。【结果】系统地鉴定了39个苹果LysM家族成员。这39个MdLysM蛋白包含241至1 119个不等的氨基酸残基,等电点分布在4.70-9.60范围内。亚细胞定位结果表明,苹果LysM蛋白在细胞核、细胞质、叶绿体、液泡、胞外基质中均有分布。根据聚类分析可将这些基因分为A、B和C 3组,且A组又可进一步被分为Ⅰ、Ⅱ 和 Ⅲ 3个亚族,说明它们的功能可能已经发生了分化。MdLysM蛋白结构域的预测结果及基因结构分析结果均与进化树聚类结果吻合。染色体定位表明,MdLysM分布在苹果17条染色体中的13条上,且此家族的基因在13条染色体上的分布为非均匀的,其中以4号染色体上分布最多,达到了9个,而1、5、7和8号染色体上则未见分布。在苹果LysM家族中鉴定出了10对和1组旁系同源基因,MdLysM基因间存在串联重复和片段重复,它们是苹果LysM家族扩张的主要动力。对39个基因在根、茎、叶、花、果5个组织器官中的实时荧光定量RT-PCR结果显示,5个器官中均能检测到MdLysM的表达,这些基因的组织表达模式具有多样性,表明它们在不同组织中可能扮演不同的角色。【结论】苹果LysM基因家族拥有39个成员,进化上可分为3组,基因结构的复杂程度与进化树聚类存在联系。39个基因分布于13条染色体上,存在重复事件。这些信息为今后苹果LysM基因家族的功能研究奠定了基础。  相似文献   

12.
【目的】分析已知苹果(Malus×domestica)MADS-box基因基本信息,研究其在不同组织中表达情况。【方法】利用NCBI数据库查询并获得苹果MADS-box基因,采用CLC Combined Workbench version 6、WebLogo 3、MEGA4.1、MapInspect和MEME等软件对其蛋白序列进行生物信息学分析。采用RT-PCR技术研究MdMADS基因在不同组织中的表达情况。【结果】共得到26个苹果MADS-box基因。MADS-box结构域分析显示,氨基酸10(I)、16-19(RQVT)、22-23(KR)、29-31(KKA)、33(E)、37-39(LCD)、42(V)和48(S)是保守不变的。保守元件分析表明,苹果MADS-box基因包含4个保守元件:元件1、3为MADS盒;元件2、4为K盒。所有苹果MADS-box蛋白都包含有MADS盒(除MdMADS9)和K盒。进化树分析结果显示,苹果MADS基因共分为5个亚组。MdMADS1、3、4、6、7、8、11、18属于SEP亚组;MdMADS2、5、12属于AP1亚组;MdMADS10、14、15、19、22和MdAGL属于AG亚组;MdMADS16、17、21、MdSOC1、MdSOC1a和MdSOC1c属于SOC1亚组;MdMADS13、23和MdPI属于AP3亚组;MdMADS20属于SVP亚组。染色体定位分析显示,MdMADS在8号染色体上分布最多,共有4个;其次是染色体2、14和17,均分布3个;染色体1、5、6、7、11和16均分布1个;染色体3、4、12和15则没有分布。RT-PCR结果分析显示,SEP和AGL亚组表达模式较为一致,主要在花和果实中表达;AP1亚组除在花和果实中表达外,在其它组织器官中也有表达。【结论】苹果MADS-box基因结构高度保守,多数成员参与调控花和果实发育过程。  相似文献   

13.
【目的】筛选分析‘GL-3’苹果叶片不定芽再生过程中的差异表达基因(differentially expressed gene,DEG),进一步解析苹果叶片不定芽再生的潜在分子机制,为提高苹果的遗传转化效率提供理论参考。【方法】‘GL-3’苹果继代组培苗叶片外植体接种在再生培养基上,分别于0、3、7、14和21 d后取样并提取RNA,构建mRNA文库后采用Illumina Nova seq平台进行测序。筛选出各时间点的DEGs,根据GO(Gene ontology)和KEGG(Kyoto encyclopedia of genes and genomes)注释结果以及官方分类,使用R软件中的phyper函数对筛选到的DEGs进行GO和KEGG富集分析;利用BLAST软件进行基因比对注释;重点分析植物再生相关的激素、酶、转录因子、多胺等DEGs;采用qRT-PCR对DEGs进行定量验证。【结果】再生培养基上培养3、7、14和21 d的苹果叶片外植体与对照组相比,分别筛选到5 250、4 937、6 852、6 493个DEGs,4个时间点共有的DEGs有3 027个。DEGs的GO功能富集显示,4个时间点筛选到的共有DEGs中上调表达的DEGs主要与氧化还原过程、细胞外围、蛋白激酶活性和有机环化合物结合等功能有关;下调表达的DEGs主要与单细胞代谢过程、钙离子结合、光合膜和类囊体部分等功能有关。DEGs的KEGG通路富集分析显示,4个时间点筛选到的共有DEGs中上调表达的DEGs主要富集在磷酸戊糖途径、植物激素信号转导、植物-病原菌相互作用和内质网蛋白质加工等途径中;下调表达的DEGs主要富集在α-亚麻酸代谢、苯丙烷生物合成、碳代谢和光合作用等途径中。对与植物离体叶片再生相关的激素、酶、转录因子和多胺等相关DEGs的表达模式进行分析发现,这些DEGs大部分呈上调表达趋势。经qRT-PCR验证后,所检测基因的表达趋势与转录组测序结果一致。【结论】通过对苹果叶片不定芽再生过程中不同时间点的基因表达谱进行检测和对比分析,获得了大量与苹果叶片不定芽再生相关的基因,研究结果为深入探讨苹果离体叶片再生机理提供了理论依据。  相似文献   

14.
【目的】 研究运用基于高通量测序的技术检测梨树病毒,为梨树病毒的检测提供新方法。【方法】 于2014年、2017年、2018年4月中旬采集库尔勒香梨花朵若干,分别进行转录组测序,将得到的序列经过转录本拼接、层次聚类和基因功能注释,筛选出注释为植物病毒的序列作为候选病毒序列。利用RT-PCR方法检测随机采集的香梨枝条样品,验证高通量测序结果的可靠性。【结果】 根据3组转录组测序数据的生物信息学分析结果,分别对注释为来源于植物病毒的66、202和921条基因序列进行分析。3种梨树中已报道的病毒,分别是苹果茎痘病毒、苹果茎沟病毒和苹果褪绿叶斑病毒,以及梨树中未报道的芸薹黄化病毒。采用设计的特异性引物,通过RT-PCR技术对筛选出的4种病毒进行扩增验证,结果扩增出苹果茎痘病毒和苹果茎沟病毒的目的片段。【结论】 高通量测序技术可作为检测梨树病毒的一种快速、有效手段。  相似文献   

15.
苹果OFP基因家族的全基因组鉴定与非生物逆境表达分析   总被引:2,自引:0,他引:2  
【目的】从苹果全基因组中鉴定OFP(OVATE family protein)家族蛋白成员,对其进行基因结构特征、组织表达及非生物逆境等系统分析,为研究苹果OFP的潜在功能提供理论基础。【方法】利用生物信息学手段,在苹果基因组数据库中筛选鉴定OFP基因家族成员;利用MEGA5.0软件进行系统进化树分析;通过Map Draw和GSDS等生物信息学工具分析基因结构及染色体定位;根据已有的苹果芯片数据库结果进行OFP基因表达谱分析;利用实时荧光定量PCR技术检测13个Md OFP的组织表达和诱导表达情况。【结果】苹果OFP基因家族包含28个成员,根据系统进化关系将其分为4组,分别包含13、6、4和5个成员;苹果中13条染色体上均有OFP基因分布,其中第12条染色体最多,有6个Md OFP成员,该基因家族的分布具有广泛性;芯片表达谱分析结果表明该类基因家族在花、果实和叶中的表达量较高,q RT-PCR验证结果较一致;经Na Cl和PEG处理后,苹果根部与地上部呈现出不同程度的响应差异,Na Cl处理明显诱导两组织中Md OFP04和Md OFP20的表达,Md OFP01、Md OFP12和Md OFP18的表达在根部与地上部组织则相反;温度胁迫明显影响Md OFPs的表达量,其中Md OFP04和Md OFP17经高温和低温胁迫处理后均明显上调。【结论】苹果OFP基因家族共有28个成员,分布于13条染色体上,该家族成员呈现出不同的组织表达模式和胁迫响应模式。  相似文献   

16.
【目的】鉴定苹果(Malus×domestica Borkh.)基因组上的bZIP基因(MdbZIP),为研究苹果bZIP转录因子提供相关信息以及在芽休眠过程中的调控作用提供理论参考。【方法】通过Pfam下载bZIP隐马尔科夫模型bZIP_1(PF00170)与bZIP_2(PF07716),利用HMMER 3.0鉴定苹果bZIP基因。使用Clustal Omega、MEGA6.0、MapInspect、DNAMAN 6.0和MEME4.10.2等软件对其蛋白序列进行生物信息学分析。采用Microarray分析与qRT-PCR技术检测苹果bZIP基因在不同处理下及其在高需冷量品种与低需冷量品种中的表达情况。【结果】鉴定得到120个苹果bZIP基因,与拟南芥的系统进化树分析将苹果bZIP分为10个亚家族(A-I和S)。染色体定位分析显示,109个苹果bZIP不均匀分布于17条染色体上,其中,11个基因无匹配的染色体定位。8号染色体上分布最多(13个),1号染色体分布最少(1个),一些染色体区域基因密度较高。基因结构分析表明,MdbZIP基因家族外显子数量0-23个,其中23个基因无内含子,分布于F亚家族(4)与S亚家族(19),基因结构进化高度保守。保守元件分析表明,MdbZIP基因家族包含30个保守元件:元件1为bZIP保守结构域;在D亚家族发现的元件10与G亚家族发现的14为已知元件,另外多数元件功能未知。通过Microarray分析显示,多个MdbZIP均可能与芽休眠的解除相关。qRT-PCR结果显示在不同品种中A亚家族8个MdbZIP均呈现出ABA诱导表达,而D亚家族中随着冷处理时间延长,在需冷量不同的品种中出现多种表达模式。【结论】苹果bZIP基因家族结构高度保守,在ABA与冷处理下呈现不同表达模式,可能参与调控苹果芽休眠进程。  相似文献   

17.
【目的】克隆苹果细胞分裂素响应因子基因Md CRF6(cytokinin response factor 6),鉴定其在调节花青苷积累和盐胁迫抗性中的作用,揭示Md CRF6的功能,为研究细胞分裂素信号途径和果树生长发育调控提供理论依据。【方法】以‘嘎啦’苹果(Malus domestica‘Gala’)为研究材料,利用同源序列比对和PCR技术,分离细胞分裂素响应基因Md CRF6。使用MEGA 5.0软件构建苹果Md CRF6与拟南芥CRFs间系统进化树;通过SMART软件和DNAMAN软件分析Md CRF6蛋白的保守结构域。利用实时荧光定量PCR方法检测该基因对细胞分裂素和盐胁迫的响应。通过电泳迁移率试验(EMSA),验证Md CRF6原核表达蛋白对DRE作用元件的绑定。构建Md CRF6植物超表达载体,并通过农杆菌介导的遗传转化获得转Md CRF6苹果愈伤组织。比较野生型和转基因苹果愈伤组织在花青苷积累和盐抗性方面的差异,结合基因表达分析,初步鉴定Md CRF6在调节花青苷积累和盐胁迫方面的生物学功能。【结果】分离得到了苹果细胞分裂素响应因子基因Md CRF6(基因序列号:MDP0000783818),该基因开放阅读框(ORF)为1 047 bp,编码含有348个氨基酸的蛋白。进化树分析和氨基酸序列比对结果表明,苹果Md CRF6蛋白在N端包含保守的CRF结构域,在C端包含保守的AP2/ERF结构域,并且与拟南芥At CRF6同源性最高。基因表达分析显示该基因具有细胞分裂素和盐胁迫响应,分别在10μmol·L-1 BA和100 mmol·L-1 Na Cl处理3 h和6 h时表达量最高。EMSA试验结果验证Md CRF6原核表达蛋白能够绑定DRE序列。在苹果愈伤组织中超表达Md CRF6,发现Md CRF6转基因苹果愈伤组织花青苷积累受到抑制,同时苹果愈伤组织的抗盐性降低。基因表达分析显示,Md CRF6显著抑制花青苷合成基因和盐响应相关基因的表达。【结论】苹果Md CRF6与拟南芥At CRF6具有高度的同源性,其参与植物对细胞分裂素和盐胁迫的响应。在苹果愈伤组织中超量表达Md CRF6抑制其花青苷积累,降低植物抗盐性。推测苹果Md CRF6可能通过结合花青苷合成基因以及抗盐相关基因的启动子,抑制基因的表达,从而负调节花青苷积累和抗盐性。  相似文献   

18.
【目的】克隆小麦的TaCKX基因并对其序列进行生物信息学分析,明确TaCKX基因在小麦基因组中的分布情况,以期为今后深入研究小麦CKX基因以及利用该基因进行小麦重要农艺性状的遗传改良奠定基础。【方法】采用同源克隆结合BAC文库筛选的方法克隆基因,通过小麦缺体-四体对其进行染色体定位。【结果】从普通小麦中国春中分离得到TaCKX5基因的gDNA和cDNA序列。分析表明,TaCKX5基因的开放阅读框为1 596 bp,编码531个氨基酸,含有CKX基因家族典型的功能位点FAD-binding domain,预测属于分泌蛋白,并具有糖基化位点。使用中国春缺体-四体将TaCKX5定位于小麦第三同源群。系统发育分析表明,CKX基因在植物中较为保守,禾谷类作物中直向同源的CKX基因很可能具有相似的特性与功能。【结论】分离获得了普通小麦TaCKX5基因全长,TaCKX5分布于小麦染色体3A、3B、3D上,与水稻OsCKX5基因直向同源。  相似文献   

19.
【目的】研究苹果树腐烂病菌的种类及其亲缘关系,为有效防治苹果树腐烂病提供理论依据。【方法】以阿克苏地区不同区域苹果树腐烂病病样为材料,采用常规组织分离法和枝条烫伤接种法分离和鉴定菌株,记录形态学特征和发病情况;利用分子生物学方法获得β-tubulin与EF1-α序列,在NCBI网站对比分析Blast同源性,采用邻接法构建系统发育树分析同源性。【结果】菌丝生长最适温度 20~30℃,最适pH值为5~6,最适碳氮源分别是葡萄糖和蛋白胨;共分离出11个菌株,将菌株接种到健康苹果枝条上均可发病且能分离出相同的菌株,各菌株分别与Valsa maliValsa ceratosperma具有较近的亲缘关系。【结论】阿克苏地区苹果树腐烂病菌为黑腐皮壳属V. mali(无性型C. mali)和V. ceratosperma(无性型C. sacculus),其中V. mali为阿克苏地区的主要致病种,在PDA上存在不同类型的培养性状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号