首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了采用酸酶法水解玉米芯中的木聚糖制备低聚木糖的工艺条件.玉米芯预处理工艺:用60 ℃水浸泡玉米芯12 h,过滤,保留滤渣.玉米芯酸预水解条件:按固液比1∶6加入2.0 g/L的稀硫酸液,120 ℃预水解60 min,溶出总糖量15.01%,平均聚合度2.16.酶水解条件:pH值4.8,加酶量40 IU/g玉米芯,50 ℃水解4 h,溶出总糖量20.32%,平均聚合度1.74,玉米芯酸酶水解液中低聚木糖的相对含量达到62.37%.  相似文献   

2.
研究利用木聚糖酶酶解小麦麸皮制备低聚木糖。采用正交旋转组合实验优化设计,确定木聚糖酶酶解制备小麦麸皮低聚木糖的最佳工艺参数。结果表明,底物浓度为10.5%,加入酶量为1 000 IU/g底物,水解温度为53℃,水解时间为5.5 h,最终得到酶解液中低聚木糖的平均聚合度为2.18,总还原糖含量为5.83 mg/mL。并通过HPLC分析确定酶解液中主要含有木二糖、木三糖、木四糖、木五糖等低聚木糖组分,且低聚木糖(木二~木五)的相对含量达64.41%。说明此水解条件能够较好的制备低聚木糖。  相似文献   

3.
利用麦麸制备低聚木糖的研究   总被引:1,自引:0,他引:1  
为提高麸皮的利用价值,研究以小麦麸皮为原料制备低聚木糖的工艺.首先采用碱提法从去蛋白去淀粉的小麦麸皮中提取戊聚糖,经正交试验得其最佳提取工艺条件为:去蛋白去淀粉麦麸与NaOH溶液的质量比为1∶20、NaOH质量分数2.5%、温度70 ℃、时间2 h.在此条件下,戊聚糖的提取率为17.31%.之后利用戊聚糖酶酶解戊聚糖制备低聚木糖,经正交试验得其最佳工艺条件为:酶添加量4 g/L、温度50 ℃,pH 5.0、时间6 h.在此条件下,酶解产生的还原糖含量为4.98 mg/mL,可溶性总糖含量为16.09 mg/mL,平均聚合度为3.23.  相似文献   

4.
为了探明碱法提取玉米芯木聚糖的最适条件,对玉米芯木聚糖的提取条件进行了研究,并对提取的不同木聚糖进行酶解。结果表明:碱法提取玉米芯木聚糖时,在100g/L NaOH、1∶20固液比、60℃、3h的条件下进行一次性提取,木聚糖得率达29.45%。提取液离心可得到纯度达80.5%的水不溶性木聚糖(wis-X),乙醇沉淀得到的水溶性木聚糖(ws-X)纯度为6.4%。wis-X的酶解产物是木糖和3种低聚木糖,ws-X的酶解产物是葡萄糖和3种低聚木糖。因此,玉米芯是制备wis-X和低聚木糖的理想原料,从简化工艺和节约成本角度考虑,碱提前不需稀酸预处理,适宜条件下提取1次即可。  相似文献   

5.
芦苇(Phragmites australis)是一种有潜力的能源作物,为优化芦苇酶解糖化工艺,应用PlackettBurman试验设计筛选影响芦苇酶糖化的重要参数,通过Box-Behnken设计确定重要参数的最佳水平,应用高效液相色谱仪(HPLC)对糖化过程中的单糖种类及含量进行分析。结果表明,影响芦苇酶糖化的重要参数是H_2SO_4浓度、Tween-80和Mn SO_4浓度,最佳工艺参数为H_2SO_4浓度0.88%、表面活性剂Tween-80添加量0.61%、Mn SO_4添加量0.26%,在此条件下,8~10 h可以完成糖化,总还原糖浓度达到45.68 mg/m L,同时验证了数学模型的有效性,液相分析表明糖化液中主要的糖种类为葡萄糖和木糖,其含量分别为21.36、16.62 mg/m L,阿拉伯糖、纤维二糖和半乳糖含量较少。  相似文献   

6.
为研究爆破维压时间对胡枝子原料化学成分、结晶度的影响,采用蒸汽爆破预处理方法,以胡枝子为原料,在爆破压力为2.25 MPa,爆破维压时间为2、3、4、5、6、10 min的条件下进行试验。结果表明:蒸汽爆破处理后纤维素、木素含量变化不大,而半纤维素含量显著降低;蒸汽爆破处理后的物料结晶度比未处理的木质纤维素原料提高了60.67%。以胡枝子为酶解糖化原料,考察了温度、时间、用酶量、底物浓度4个影响因素,得到了最佳的条件为:温度46℃、时间60 h、用酶量80 U、底物浓度5%。在此条件下,对比了原料与不同蒸汽爆破维压时间处理后胡枝子物料的酶解糖化率。结果表明:蒸汽爆破预处理可使糖化率提高约2.8倍,达到84%,极大地提高了纤维素酶的可及度,是一种有效的预处理方法。   相似文献   

7.
低聚木糖的制备及其对益生菌体外增殖的作用   总被引:1,自引:0,他引:1  
针对玉米芯微波消解-内切木聚糖酶水解制备低聚木糖的工艺,以低聚木糖的得率为主体评价指标,通过单因素实验时影响低聚木糖得率的微波消解过程和内切木聚糖酶水解过程的因素与水平进行研究,并考察获得的低聚木糖对益生菌的体外增殖作用.结果表明:玉米芯酶法制备低聚木糖的最佳工艺条件为微波处理压力1.6 MPa,微波处理时间5 min,内切木聚糖酶用量140 U·g-1,酶解时间6 h;在最适条件下,玉米芯酶解液中低聚木糖的得率为82.5%,质量浓度为11.02 g·L-1;低聚木糖对益生菌的体外增殖实验表明,低聚木糖添加量在0.2%和0.4%时,分别可以对乳酸杆菌和枯草芽孢杆菌起到最好的增殖作用,分别达到311%和183%,添加量进一步提高反而会抑制这2种菌的生长.  相似文献   

8.
测定芦苇、海带、浒苔等3种海滨植物的纤维成分和酶解糖化后的还原糖、木糖含量,比较这几种海滨植物作为产乙醇生物质原料的可能性,对其中纤维素含量较高的芦苇进行发酵产乙醇试验。结果表明:芦苇的纤维素含量较高为34.60%,高于对照样秸秆的33.60%,浒苔的半纤维素含量较高为39.40%;相同条件下,酶解52 h,浒苔和芦苇的还原糖含量分别为35.87 mg/mL和31.91 mg/mL,均高于秸秆的18.41 mg/mL,而木糖含量芦苇较高。对芦苇进行乙醇发酵试验,在相同条件下,发酵20 h时,乙醇量为0.43%~0.47%,高于秸秆的0.29%~0.31%。可见芦苇、浒苔作为生物乙醇原料具有极大的研究价值和利用潜力,有必要进一步深入研究。  相似文献   

9.
[目的]对玉米芯木糖-纤维素酶法分级工艺中的稀酸预处理、蒸煮预处理和木聚糖酶解工艺进行优化。[方法]以干燥的玉米芯为原料,先进行稀酸-蒸煮预处理,研究不同因素对木糖得率的影响,然后再对物料进行木聚糖酶酶解。[结果]得到的玉米芯酸预处理优化工艺为:固液比1∶10 g/ml,H2SO40.5%,水浴70℃,处理2.0 h,木糖的损失率为4.72%,木糖酶解得率为30.03%。酸预处理后玉米芯残渣蒸煮预处理条件为:固液比1∶10 g/ml加入水,在120℃预水解2.0 h,蒸煮液木糖得率为54.77%,总酶解得率为69.11%。酶水解条件:pH 5.0,加酶量2 800 IU/g玉米芯,50℃水解36 h,总酶解得率83.41%。[结论]玉米芯蒸煮预处理能提高木糖的得率,单一用稀酸预处理再酶解得到木糖的得率并不理想。  相似文献   

10.
不同预处理提高棉花秸秆还原糖酶解效果的研究   总被引:1,自引:0,他引:1  
为缓解饲草短缺的问题,采用硫酸处理、微波处理、蒸汽爆破处理等9种方法预处理棉花秸秆,软化棉花秸秆中的木质素,增强饲喂时的适口性,提高棉花秸秆的利用率。结果表明:蒸汽爆破处理棉花秸秆的损失量最大,为39.00%。纤维素含量除了蒸汽爆破处理较低,其它处理均高于对照。木质素含量,除氨化(16℃)与对照接近外,其它的处理均低于对照。对预处理的棉花秸秆分别添加筛选自牛粪一组纤维素降解复合系和绿色木霉进行酶解试验。酶解结果表明:微波处理、氨化处理(16℃)、碱+微波处理、双氧水处理、蒸汽爆破处理绿色木霉的活性强于纤维素复合酶,碱/微波处理、氨化处理(30℃)、碱处理、硫酸处理的预处理棉花秸秆进行酶解效果纤维素复合酶的作用优于绿色木霉的效果。微波处理、氨化处理、碱+微波处理、双氧水处理、硫酸预处理酶解的效果较好。碱+微波波处理失重率最高,达到19.32%、酶解率最高,达到32.20%;硫酸处理糖化率最高,达到18.20%、转化率最高,达到20.23%;碱+微波处理葡萄糖得率最高,达到1.013%。  相似文献   

11.
NaOH-乙醇预处理提高甘蔗渣酶法制备低聚木糖效率   总被引:1,自引:0,他引:1  
目的对甘蔗渣酶法制备低聚木糖(XOS)的工艺进行研究,并通过NaOH-乙醇预处理提高低聚木糖的生产效率。方法首先,对预处理前后甘蔗渣的化学组成进行表征,确定预处理对原料组分的影响。其次,利用接触角和X射线衍射分析技术,探讨预处理对底物湿部化学(润湿性)特性和物理结构的影响。最后,通过高效液相色谱(HPLC)分析检测木聚糖酶水解样品,比较不同预处理强度对酶水解生产低聚木糖质量浓度的影响。结果对于NaOH-乙醇预处理促进木聚糖酶水解的工艺而言,最佳的预处理条件为10 g/L NaOH-乙醇(乙醇的体积分数为50%)预处理。在该预处理强度下,大量的木质素被脱除,脱除率可以达到78.10%;而且,该预处理方式能够有效改善物料的亲水性能,使接触角从61.5°降低到55.4°,同时将纤维原料的结晶度从28.6%提高到32.3%。通过分析酶水解样品可知:当NaOH用量为10 g/L时,可以实现最高低聚木糖质量浓度(1.85 g/L),与未处理原料(0.83 g/L)相比,提高了122.89%。结论对于甘蔗渣制备低聚木糖的工艺而言,采用木聚糖酶水解的方式能够实现从半纤维素到低聚木糖的有效转化,并且采用NaOH-乙醇预处理可以有效提高甘蔗渣的酶解效率,促进低聚木糖的生产。   相似文献   

12.
以玉米芯为原料,超微粉碎后,经高温高压预处理,采用复合酶法提取玉米芯低聚木糖,利用薄层层析和高效液相色谱对制备的低聚木糖进行组分分析。结果表明,复合酶法制备玉米芯低聚木糖的最佳工艺为:m(木聚糖酶)∶m(纤维素酶)∶m(半纤维素酶配)=3∶1∶3,复合酶的添加量为2%,温度50℃,最适pH 5.0,酶解时间60min;组分分析表明,玉米芯低聚木糖提取液中主要为木糖、木二糖、和木三糖,提取率分别为1.495%、3.727%、1.949%。  相似文献   

13.
碱性预处理对稻草秸秆酶解的影响   总被引:2,自引:0,他引:2  
以稻草秸秆为原料,弱碱性预处理后进行酶解糖化,对预处理前后的稻草秸秆进行扫描电镜观察,研究预处理条件对稻草秸秆半纤维素、纤维素、木质素含量及损失率的影响,通过酶解还原糖的释放量来判断预处理的效果.结果表明:碱性预处理降低了稻草秸秆中木质素的含量,提高了纤维素的含量,增加了纤维素酶与底物的酶解可及度,促进了稻草秸秆酶解糖化.经2.0%NaOH、60 ℃、固液比1﹕12处理24 h后的稻草秸秆,在pH5.0、加酶量31.2 mg/g、45 ℃条件下酶解120 h的还原糖达到了790.3 mg/g,糖化率为81.01%.扫描电镜观察显示,经碱性预处理过的稻草秸秆孔隙度增大,机械组织暴露,酶解的有效比表面积增大,酶解速率加快.  相似文献   

14.
为提高水飞蓟蛋白提取效果,利用纤维素酶和淀粉酶预处理后,再碱溶酸沉法提取水飞蓟蛋白,在酶预处理单因素试验的基础上,采用正交试验设计,研究pH值、温度、加酶量和酶解时间对水飞蓟蛋白提取率的影响。结果表明,提取水飞蓟蛋白最佳的酶预处理条件为:加酶量(纤维素酶+淀粉酶)为3.0%+6.0%,反应温度50℃,pH值6.0,酶解时间150 min。水飞蓟脱脂粉经过酶预处理后,水飞蓟蛋白提取率达到66.75%,而未用酶处理的蛋白提取率为53.62%,表明酶预处理水飞蓟粉可以显著提高水飞蓟蛋白的提取效果。  相似文献   

15.
以葛根淀粉为原料,以耐高温活性酵母为发酵菌种,进行发酵生产酒精的研究,以还原糖含量为指标,通过正交试验确定了最佳的酶解工艺条件为:加酶量20 U/g,料液比1 : 1,酶解时间3.5 h,酶解温度90 ℃.在最佳酶解工艺条件下还原糖含量为215.4 g/L.添加适量的尿素氮源,酒精含量较高,还原糖利用率达到86%,发酵醪酒精浓度可达到11.5%(V/V).  相似文献   

16.
秸秆预处理对纤维素酶水解效果的影响   总被引:4,自引:0,他引:4  
钟文文 《湖北农业科学》2007,46(6):1006-1008
采用高温高压、稀酸、稀碱和液氨4种方法对玉米秸秆进行预处理,提高了纤维素酶对秸秆纤维的可及度.结果表明,稀碱预处理的效果较好,通过正交试验,确定了稀碱预处理的最适条件为1%NaOH、15℃、固液比1∶20条件下预处理72 h,秸秆纤维素的酶解率达到73.5%,半纤维素损失率为33.1%.  相似文献   

17.
促进木质纤维素类生物质酶解的预处理技术综述   总被引:4,自引:0,他引:4  
木质纤维素类生物质是通过微生物作用转化为乙醇和氢能的可再生糖资源,酶解木质纤维素是它向乙醇和氢能转化的第1步,但是由于木质纤维素类生物质的高稳定性,要得到较高的酶解率就必须先进行预处理.本研究主要总结了机械粉碎预处理、辐射预处理、稀酸预处理、碱预处理、氧化预处理、高温液态水预处理、蒸汽爆破预处理和生物预处理这些对木质纤...  相似文献   

18.
为探寻适合红麻纤维蒸气爆破预处理与酶解糖化的技术参数,开展红麻纤维气爆压力、保压时间、填料量等蒸气爆破预处理技术参数研究,并对蒸气爆破预处理后的红麻纤维进行浴比、酶解时间、酶种类、酶配比、酶用量等酶解糖化单因子试验与正交试验。结果表明:红麻纤维气爆预处理以填料量100%、气爆压力2.5 MPa、保压时间240~300 s的效果较好;红麻纤维酶解糖化的较优工艺参数为浴比(1∶5.00)~(1∶7.50),纤维素酶和木聚糖酶的配比2∶3,采用混合酶(1.50%纤维素酶+2.250%木聚糖酶),p H 5.0,糖化率可达70%以上。  相似文献   

19.
NaOH预处理对玉米秸秆纤维结构特性和酶解效率的影响   总被引:1,自引:1,他引:0  
为研究不同温度下Na OH预处理对玉米秸秆纤维结构特性和酶解得率的影响,为确定纤维原料碱法预处理的适宜条件提供理论依据,采用稀Na OH溶液对玉米秸秆分别在60、80、105℃下预处理,测定了预处理前后纤维原料的化学组成和酶解得率,并采用扫描电镜(SEM)、X射线衍射仪(XRD)和傅里叶变换红外光谱仪(IR)对预处理前后玉米秸秆的纤维结构进行了表征。结果表明:Na OH预处理能够有效脱除玉米秸秆中木质素,增加纤维素和半纤维素比例,提高纤维素结晶度,产生的润涨作用导致纤维束状结构疏松。Na OH 80℃预处理1 h后,玉米秸秆中纤维素结晶度达到63.7%,60 h的酶解得率达到71.4%;碱处理温度进一步升高则会充分暴露纤维表面纹孔,同时使纤维素分子内氢键重新形成,容易进一步损失半纤维素,降低纤维素的润涨程度,从而降低酶解效率。80℃条件下碱处理能够有效改善玉米秸秆纤维结构,提高其转化利用效率。  相似文献   

20.
为充分利用亚临界芝麻饼粕中糖类和蛋白质,以可溶性糖质量浓度和产率为考察指标,选择最佳工具酶酶解芝麻饼粕中的糖类,在单因素试验基础上,采用响应面试验对酶解工艺条件进行优化,制备可溶性糖,随后利用碱提酸沉法从酶解后的芝麻饼粕中提取芝麻蛋白质。结果表明,酶解制备可溶性糖的最佳工艺条件为:采用α-淀粉酶与纤维素酶(酶活力之比为1∶1)组成的复合酶、酶解温度37.0℃、酶解时间2.5 h、pH值5.0、料液比5%、加酶量69.4 U/g,芝麻中可溶性糖产率达86.8%。在pH值10.5、温度45℃、料液比5.6%、酶解时间20 min的工艺条件下,对酶解后得到的芝麻饼粕沉淀采用碱提酸沉法提取蛋白质,蛋白质的提取率为41.2%,纯度为86.5%。以上研究证实,酶解结合碱提酸沉可以实现芝麻饼粕中糖类与蛋白质的综合利用,为亚临界芝麻饼粕的综合开发开辟了新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号