首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
随着淡水养殖集约化程度的提高,水体氨氮和亚硝态氮等有毒物质浓度随之升高,严重危害了养殖对象的生长。因此,水体氨态氮及亚硝态氮的控制成为水质控制的关键。本文针对集约化养殖条件下的养殖水处理在天津市水产研究所淡水试验站进行了生物膜法和生态浮床净化法处理池塘养殖用水的实验。结果表明:生物膜法和生态浮床净化法都能有效去除池塘水体氨态氮及亚硝态氮,如果不使用水生植物,则每生产1t鱼需设置6.76m2的生物包。  相似文献   

2.
植物修复技术是处理水产养殖带来的污染问题的一种有效手段和途径.本文主要针对底栖水草-轮叶黑藻对水体富营养化污染指标的降解作用进行研究.通过分组对比试验测试了轮叶黑藻对富营养化污水的吸收降解效果。试验结果表明:1)试验结束时,种植轮叶黑藻水体中TN、NH4^+-、NO3^--N、TP、PO4^3--P和CODcr的去除率分别为8.2%、68.8%、90.2%、81.9%、89.5%和48.2%:2)轮叶黑藻对水中各种形态氮(尤其硝态氮)的净化效果良好;3)对水中磷的净化效果明显。由此可见,轮叶黑藻在养殖水体污染控制与治理方面有广阔的应用前景,试验为应用轮叶黑藻修复受污染的养殖水体环境打下基础。  相似文献   

3.
不同覆盖率的生态浮床对池塘氮、磷的去除率   总被引:1,自引:0,他引:1  
通过在养鱼池塘设置生态浮床培育空心菜,对比分析生态浮床不同覆盖率对水体氮、磷去除效果的影响。试验结果显示,设置生态浮床系统池塘与对照池塘之间氮磷含量存在显著差异(P0.05);生态浮床系统覆盖率在10%、20%、30%的设置下,对水体总氮的去除率分别为53.6%、62.4%、68.9%,对总磷的去除率分别为62.8%、74.1%、78.7%,三种浮床处理对水体氮、磷去除差异显著(P0.05)。生态浮床系统是一种新型的养殖模式,是池塘养殖生物与无土栽培植物在生态位上实现互利共生,该系统可作为池塘水体富营养化生态防控的措施进行推广应用。  相似文献   

4.
通过海藻酸钠固定化微生物小球对淡水养殖废水中活性磷、氨态氮、硝态氮、亚硝氮、化学需氧量质量浓度的影响,研究海藻酸钠固定化微生物处理淡水养殖废水的可行性。结果显示,海藻酸钠小球在养殖废水中极易溶解,不仅造成水体浑浊,且原生动物等可能以海藻酸钠为营养基而大量繁殖,进而导致水体缺氧,化学需氧量、氨氮等质量浓度不降反升,固定化微生物对废水的净化作用则难以显现。由此可见,以海藻酸钠为材料进行微生物固定化不适用于淡水养殖废水的净化处理。  相似文献   

5.
模拟生态浮床种植6种水生植物改善水质效果研究   总被引:3,自引:0,他引:3  
为了研究贵州高原麦西河库湾水质改善生态修复工程示范区内生态浮床适合种植的水生植物,以及水生植物对水质改善的效果,选择水蓼、水芹菜、空心菜、慈菇、菖蒲和美人蕉6种贵州高原常见的水生植物进行室内模拟试验.结果表明,6种水生植物对水体总氮去除率为40.0% ~90.9%,总磷去除率为53.1% ~87.1%,氨氮和化学需氧量等指标变化也很明显,去除效果均较好;植物的生长情况来看,菖蒲和空心菜的净增生物量最大,水蓼最小;植物的地上部分氮磷含量较高,可以定时收割以转移水中的营养盐.通过对比分析,认为菖蒲和空心菜是比较适合在贵州高原水库和湖泊生态浮床上种植的水生植物.  相似文献   

6.
采用逐月采样的方法研究了多级生物净化措施,即在封闭循环水养殖系统的动力水渠浮床培植多种水生经济植物、构建固定微生物膜和养殖贝类,在沉淀池和净化池放养滤食性鱼类,建立芦苇人工湿地,对养殖系统中无机营养盐和有机质含量与分布的影响。试验结果表明,养殖水体经多级生物净化处理后能够循环使用,水体碱度和硬度轻微降低,除磷酸盐含量上升5.4%外,硝态氮、亚硝态氮、氨氮、总氮和总磷的去除率分别为27.7%、44.0%、26.0%、42.0%和15.7%;浮游植物和浮游动物生物量分别下降31.4%和20.1%;浮游植物生物多样性指数增加,种类组成明显好转,蓝藻生物量和优势度指数明显降低,硅藻和绿藻继而成为优势种群,凡纳滨对虾平均产量达11 250kg/hm~2,最高产量达15 000kg/hm~2,提高了经济效益和生态效益。  相似文献   

7.
以沙塘鳢夏花培育水体为实验水体,应用光合细菌和芽孢杆菌的复合制剂作为养殖水体净化生物,探讨微生态制剂对沙塘鳢养殖水体的净化效果。实验设3个浓度组,分别为300、600、900mg/m3。每隔6d测定氨氮和亚硝态氮,7d测定总氮、总磷和COD。沙塘鳢经过60d养殖后,经测量后计算增重率和成活率。结果表明,微生态制剂能够有效去除养殖水体中的总氮,氨氮,提高沙塘鳢的增重率和成活率。  相似文献   

8.
该文采用生态学试验方法,对鳜池塘和大棚养殖模式的水质变化规律进行了调查分析,同时采用不同微生态制剂商品(光合细菌、枯草芽孢杆菌、乳酸菌)对鳜养殖水体水质调节效果进行了研究。结果显示,整个鳜养殖周期(苗种至商品鱼),大棚养殖模式水体温度、溶氧、pH值与池塘养殖模式无明显区别;大棚养殖模式三氮(铵态氮、硝态氮、亚硝态氮)变化规律与池塘养殖模式大致相同,但大部分时间前者水体含量较高;大棚养殖模式水体总磷含量高于池塘养殖模式,且总磷最高值出现时间较池塘养殖模式推迟了近1个月。光合细菌对鳜养殖水体氨氮、亚硝态氮以及总氮整体调控效果最佳;枯草芽孢杆菌对降低硝态氮和亚硝态氮有良好的效果;乳酸菌对养殖后期降低水体pH值有一定的作用。结论:相对于鳜池塘养殖模式,大棚养殖模式氮磷物质循环转化效率较低,合理搭配使用微生物制剂调节水质养殖效果更佳,同时需注意不良天气对微生态制剂使用效果的影响。  相似文献   

9.
正水产养殖废水内含氮、磷等营养盐类,直接排放容易导致周围水体富营养化。在养殖水体中设置浮床,采用经济动、植物对养殖水体进行净化处理,可在净化水质的同时增加养殖收益,具有换水量低、成活率高、经济效益好的优点。现在鳜养殖池塘设置了不同生物(水稻、空心菜及河蚌组合)浮床面积,并进行了比较。  相似文献   

10.
中小型水库鱼菜共生立体生态养殖试验   总被引:1,自引:0,他引:1  
<正>鱼菜共生立体生态养殖的技术就是利用取得专利的生态浮床技术,在水面表层养殖水生经济植物,在中下层养殖鱼类。残饵及养殖鱼类粪便给水生植物提供营养,水生植物消耗水中氨氮及矿物元素,可以去除污染水体中的氮、磷等污染物,抑制水体中的藻类过度生长,同时还可以美化水体景观,既净化了水质,水生蔬菜又为鱼类提供源源不断的溶氧,以提高饵料利用率,提高鱼类抗病能力,降低养殖成本,提高养殖效益,以达到资  相似文献   

11.
3.池塘水体净化设施池塘水体净化设施是利用池塘的自然条件和辅助设施构建的原位水体净化设施。主要有生物浮床、生态坡、水层交换设备、藻类调控设施等。(1)生物浮床:生物浮床净化是利用水生植物或改良的陆生植物,以浮床为载体,种植在池塘水面,通过植物根系的吸收、吸附作用和物种竞争相克机理,消减水体中的氮、磷等有机物质,并为多种生物生息繁衍提供条件,重建并恢复水生态系统,从而改善水环境。生物浮床有多种形式,构架材料也有很多种。在池塘养殖  相似文献   

12.
淡水养殖水体氨氮积累危害及生物控制的研究现状   总被引:4,自引:1,他引:3  
随着淡水养殖集约化规模的扩大,水体氨态氮及亚硝态氮的控制成为水质控制的关键。本文由水体的氮循环过程浅析了养殖水体氨氮积累的成因及危害,综述了淡水养殖中利用生物方法降低水体氨氮的研究及应用现状。  相似文献   

13.
近年来虾蟹养殖面积不断扩大,许多水生植物被利用在虾蟹养殖中取得了良好的经济效益。轮叶黑藻是一种多年生沉水植物,生长在湖泊、河沟及池塘等水域中,是草食性鱼类和河蟹的适D青饲料,并且可以净化养殖水体,为虾蟹提供隐蔽场所。一、轮叶黑藻生物学特征轮叶黑藻为雌雄异体植物,能结出果实和种子。能在枝尖形成特化的营养繁殖器官——鳞状芽苞。冬季休眠,水温10℃以上时,沉落水底的芽苞节间开始伸长,将生长点推出覆盖其上的沉积物层,在光照下茎叶转为绿色,同时从芽苞基部叶腋中萌生出不定根,形成新的植株。也可以通过断校进行…  相似文献   

14.
为研究养殖库区水域氮的时空分布特征,于2014年3月至2015年2月在福建省水口水库范围内主要养殖库区选取15个采样点进行每月的监测和动态研究,全面分析了不同养殖库区、不同时期水体各形态氮的时空变化特征。结果表明,养殖库区水体总氮、氨氮、亚硝态氮平均浓度分别为1.38~2.15、0.24~0.53,0.03~0.06 mg/L。不同养殖库区水体各形态氮含量因季节更替而变化较大,总体趋势是总氮浓度冬季较高;除太平养殖库区外,其他养殖库区水体的氨氮浓度春季较高,浓度范围为0.466~0.596 mg/L;亚硝态氮浓度变化幅度不大,范围为0.009~0.031 mg/L。不同养殖区域水体中各态氮含量具有一定的相关性,雄江和太平养殖库区中总氮和氨态氮、亚硝态氮之间相关性不显著,黄田库区和湾口库区养殖区水体中总氮和氨态氮、亚硝态氮呈现负相关;尤溪口养殖库区水体中氨态氮和亚硝态氮呈显著负相关。  相似文献   

15.
低温条件下水芹对水体氮、磷的静态净化研究   总被引:4,自引:1,他引:3  
研究利用水芹(Oenanthe javanica)具有耐寒、适宜短日照季节生长的特性,通过静态净化试验,探讨低温季节水芹对N、P的净化效果,为水芹净化冬季养殖污水的实际应用提供理论依据。结果表明,在10~15℃低温条件下,水芹对水体中的氨氮和磷酸盐具强烈吸收作用。4d中,水芹对3组不同质量浓度污水中氨氮和磷酸盐的去除率分别为:A组79.5%和31.9%,B组82.6%和48.8%,C组99.1%和72.7%。如存在三态氮,水芹优先吸收氨氮。利用SPSS软件通过非线性回归建立了静态条件下水芹对氨氮和磷酸盐的净化模型。水芹根际硝化细菌对水体氨氮净化也具有一定作用,对氨氮的去除贡献率约为10%~30%,水芹吸收的贡献率约为70%~90%。利用水芹净化冬季养殖污水具有生态和经济的综合效益。  相似文献   

16.
为了解罗非鱼-鱼腥草共生系统中鱼草不同配比对池塘水质及细菌群落结构的影响,本文构建了相同池塘覆盖面积不同鱼腥草种植密度(350 g/m3、450 g/m3、600 g/m3和0 g/m3)(M1)和相同种植密度不同池塘覆盖面积占比(5%、10%、15%和0%)(M2)的两种养殖模式。通过在以上两种模式条件下,研究各组对罗非鱼养殖池塘水质以及水体和鱼体肠道微生物群落的影响,探讨了罗非鱼-鱼腥草池塘共生系统中鱼草的相对最佳搭配比例。结果表明,在M1实验模式下,不同密度组鱼腥草浮床均能显著改善养殖水体氨氮、亚硝氮、硝酸氮、总氮、总磷、磷酸盐等水质因子,且在三个月养殖周期内,初始种植密度为450 g/m3的鱼腥草浮床组与350 g/m3和600 g/m3实验组相比,效果相对更加稳定。16S rRNA V4区的高通量测序分析显示M1模式下各组鱼腥草均能显著优化鱼体肠道和水体的菌群结构,并增加菌群多样性,且养殖时间越长,优化效果越明显;相同月份下,实验组450 g/m3和350 g/m3(p > 0.05)比实验组600 g/m3优化效果相对更稳定(p< 0.05);在不同月份下,环境变化对罗非鱼肠道及水体细菌多样性的影响大于鱼腥草浮床对养殖水体的影响。在M2实验模式中,各组鱼腥草浮床均能显著净化罗非鱼养殖池塘水质,其总氮、总磷、氨氮、亚硝氮、硝酸氮、磷酸盐等均呈曲线变化,总体分析来看,在该养殖周期内,鱼腥草覆盖面积为10%的实验组对养殖水体NH4+-N,NO3-N,TN,TP以及PO43-P等指标的净化效率要相对稳定于实验组5%和15%。高通量测序分析结果表明不同覆盖面积鱼腥草浮床均能增加养殖水体和鱼体肠道的细菌微生物多样性,相对而言,10%覆盖面积组的效果更稳定。此结果为完善罗非鱼-鱼腥草共生养殖模式的鱼草配比提供了数据支撑。  相似文献   

17.
<正>养殖水质的好坏,主要看以下几个水质指标:氨态氮、亚硝态氮、硝态氮、pH值、化学耗氧量、硫化氢等七个指标。水产养殖水体中,如何让含氮有机物进行有效的转化,以确保养殖水质维持良好,是养殖成功的关键之一。养殖水体中的含氮有机物,在水体中先转为氨态氮,再转为亚硝态氮,最后为硝态氮。转化过程中,从含氮有机物到氨氮需要的时间不长,从氨态氮到亚硝酸盐的时间较短,但亚硝酸盐的转化时间比较长,这是养殖水体中亚硝酸盐高的主要原因。  相似文献   

18.
水芹对富营养化水体的净化效果研究   总被引:2,自引:0,他引:2  
利用聚乙烯板作为浮床栽植水芹(Oenanthe javanica),观测其对4组不同富营养化程度水体的净化效果。结果表明,水芹对总磷(TP)有较好的去除效果,初始浓度越高去除率越低,去除率范围53.3%~84.0%;水芹对低于5mg/L的总氮(TN)有较好的去除效果,去除率也随初始浓度升高而降低,去除率范围36.1%~85.7%,如果总氮浓度过高(达到20mg/L左右),去除效果不明显。试验组氨氮(NH3-N)的浓度虽然有明显的降低,但与对照组比没有明显优势,水芹对亚硝酸盐氮(NO2--N)的去除作用不明显,硝化细菌对氨氮和亚硝酸盐氮的去除起主要作用,水芹通过降低水中总氮水平对氨氮和亚硝酸盐氮有一定间接的去除作用。在整个试验过程中,各组高锰酸盐指数(CODMn)维持在较低水平(<3mg/L),未观察到栽植水芹对高锰酸盐指数的降低作用。  相似文献   

19.
在北方地区精养池塘内设置生物浮床种植空心菜,通过植物根系的吸收作用,将池塘内多余的营养物质吸收,达到改善池塘水质的作用。结果显示:试验池塘pH值保持在适宜养殖的合理范围内,氨氮、亚硝酸盐氮降低20%以上,总氮、总磷值也明显低于对照池塘,高锰酸盐指数降低不明显。  相似文献   

20.
海马齿对海水养殖系统中氮、磷的移除效果研究   总被引:3,自引:0,他引:3  
大量的外源性饵料和排泄物使海水养殖水体N、P以及有机物大量增加,导致水质恶化,是制约海水养殖业发展的主要因素。通过构建海马齿面积比为3∶2盐度为15的A、B 2组浮床海水养殖系统,以检验海马齿的N、P移除能力。结果显示,当海马齿处于生长启动期,A组和B组的水质指标与对照组之间无显著性差异(P>0.05);但当海马齿生长进入稳定期后,A组和B组的氨氮去除率为74%~91%和60%~91%,亚硝态氮去除率为93%~98%和71%~97%,总氮去除率为11%~25%和14%~33%,COD去除率为67%~85%和61%~81%,总磷去除率为41%~68%和35%~71%,试验组氨氮、亚硝态氮、COD和总磷浓度与对照组之间都存在显著性差异(P<0.05)。2组不同密度的海马齿浮床系统都显示了较高的N、P去除能力,表明海马齿在盐度5时能有效地吸收N、P,降低COD,减少有机物污染,改善养殖环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号