首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
Pen a1抗原表位187-202关键氨基酸的筛选和鉴定   总被引:1,自引:0,他引:1  
【目的】Pen a1是虾中主要的过敏原蛋白,其抗原表位与致敏作用有关。对Pen a1的一个抗原表位187—202中氨基酸的出现频率及保守性进行分析后合成突变肽,并检测该突变肽与表位抗体的结合能力,筛选关键氨基酸,为研究虾致敏机理及脱敏方法提供理论依据。【方法】利用MEGA5软件对Pen a1蛋白5个表位及其氨基酸的组成与出现频率进行分析,选出这些表位中出现频率大的氨基酸;对过敏原数据库中所有致敏食物原肌球蛋白的氨基酸序列的保守性进行分析,筛选出保守性高的氨基酸。两种方法筛选出的共有氨基酸为潜在的关键氨基酸。用丙氨酸分别替代这些潜在的氨基酸形成突变肽。利用固相合成法分别合成原表位肽及突变肽。并将原表位肽作为免疫原免疫新西兰大白兔,获得表位多克隆抗体。利用间接ELISA方法及竞争性Dot-blot方法检测突变的表位肽与表位抗体IgE结合能力,筛选出结合能力明显下降的突变肽,其中替换的氨基酸即为该表位的关键氨基酸。【结果】谷氨酸(E)、亮氨酸(L)、精氨酸(R)、谷氨酰胺(Q)、缬氨酸(V)、丝氨酸(S)、天冬氨酸(D)在表位中出现频率较大,并高于在Pen a1整体蛋白中出现的概率,为活性氨基酸。将序列在187—202的表位中氨基酸组成及出现频率进行统计,推测E、V、L可能为该表位的关键氨基酸。将SDAP数据库中致敏食物原肌球蛋白序列与Pen a1氨基酸序列用DNAMAN软件进行多序列比对,K、L、E、V、G在所有比对的序列中都存在,表明这5个氨基酸为保守氨基酸。选择共有的E、V、L为可能的关键氨基酸,用丙氨酸替代表位中E、V、L分别合成1、2和3号突变肽。用竞争性Dot-blot检测突变肽结合抗体能力,以提取纯化的虾致敏蛋白为包被原,用突变肽抑制虾蛋白结合抗体,发现原表位肽抑制作用明显,1号突变肽的抑制作用与原表位肽相似,2、3号肽的抑制作用明显低于原表位肽。谷氨酸突变的1号突变肽对表位活性并没有较大影响,说明谷氨酸不是该表位的关键氨基酸;而2、3号突变肽与抗体的结合能力明显降低,即亮氨酸和缬氨酸是该表位的关键氨基酸。同时,利用间接ELISA方法,将原表位肽和突变肽与兔血清反应,比较OD450值。结果显示,1号突变肽致敏性降低,OD450值约为对照的1/2.1,2号突变肽OD450值降低为对照的1/2.6,3号突变肽OD450值降低为对照的1/3.2。说明突变表位与表位抗体结合能力均有不同程度的降低。结合竞争Dot-blot试验结果,亮氨酸和缬氨酸为该抗原表位的关键氨基酸。【结论】建立了一种关键氨基酸的筛选和鉴定的方法。亮氨酸和缬氨酸被丙氨酸取代后,其与表位对应抗体的结合能力发生明显下降,是Pen a1中表位187—202的关键氨基酸。这种筛选关键氨基酸的方法可以用于其它抗原表位的关键氨基酸的确定及氨基酸对表位致敏性的影响,深入研究过敏原脱敏机理;同时也可用于基因工程或氨基酸修饰中降低过敏原致敏性。  相似文献   

2.
利用生物软件对新城疫病毒F48E9株的血凝素神经氨酸酶(HN)蛋白进行抗原特性分析,选定172~570位氨基酸区域作为多肽表位候选区域。以pUC18-F-HN为模板,设计引物通过PCR扩增,获得HN抗原结构域基因片段,SaⅠl、NoⅠt双酶切定向克隆到原核表达载体pET28a,获得重组质粒分别命名为pET28a-HNa。重组质粒转化大肠杆菌感受态细胞BL21,筛选出阳性克隆,诱导表达并取产物进行分析。结果表明,HN抗原结构域基因片段获得了融合表达,Western-blotting分析证实表达产物HN与NDV阳性血清具有免疫反应性。为进一步研究HN蛋白抗原结构域的免疫原性以及HN蛋白与F蛋白相互作用奠定了基础。  相似文献   

3.
Pen a 1表位抗原多克隆抗体的制备及鉴定   总被引:1,自引:1,他引:0  
【目的】建立一种识别、检测致敏蛋白的新方法。【方法】Pen a 1为虾中主要的致敏蛋白,从其5个主要IgE结合区中选择一段具有代表性的(85—105位)含21个氨基酸的多肽序列,进行化学合成,将多肽分别与匙孔血蓝蛋白(KLH)和牛血清白蛋白(BSA)偶联,制得免疫原和包被原,免疫原免疫新西兰纯种白兔得到多克隆抗体。以刀额新对虾蛋白、卵清蛋白、花生蛋白和牛奶蛋白为样品,免疫印迹鉴定多克隆抗体对刀额新对虾中Pen a 1蛋白的特异性。【结果】经Ellman试剂测定多肽与KLH、BSA的偶联比分别为 12﹕1和8﹕1。间接非竞争ELISA测定多克隆抗体的效价达1.024×106,间接竞争ELISA(icELISA)测定该多克隆抗体对多肽的IC50和IC10分别为0.4324 μg•mL-1和0.0004 μg•mL-1,表明多克隆抗体对多肽具有较强的灵敏性。免疫印迹试验结果表明,此多克隆抗体仅可识别刀额新对虾蛋白中的Pen a 1蛋白,对所选其它物种蛋白无响应。【结论】通过人工合成多肽制备的抗体可用于目标致敏蛋白质的检测分析,该方法快捷灵敏,且具有较高的特异性。  相似文献   

4.
为观察日本血吸虫合成表位多肽疫苗诱导的保护性免疫,将用日本血吸虫抗原免疫血清筛选噬菌体随机12肽库得到的、具有较好免疫保护性的4个模拟抗原表位短肽进行人工合成,用酶联免疫吸附实验(ELISA)检测它们的抗原性.将合成多肽分别与钥孔戚血蓝蛋白(KLH)连接后免疫昆明小鼠,第3次免疫后收集血清,检测其针对各个多肽和可溶性成虫抗原(AWA)的IgG抗体滴度,以及补体介导的小鼠体外杀日本血吸虫童虫作用.结果显示,4个合成多肽均能被相应的抗体识别,具有良好的抗原性;能诱导产生特异性IgG抗体.这些抗体在补体参与下能在体外有效毒杀血吸虫童虫.与正常小鼠血清比较,4个合成多肽免疫血清的杀童虫率分别为31.7%,41.3%,21.1%和17.3%,均具有显著性;与KLH免疫血清相比时,杀童虫率分别为23.7%,34.4%,11.8%(P=0.077,无显著性)和7.5%(P=0.102,无显著性).这些结果表明,这4个合成表位多肽具有良好的抗原性和免疫原性,与KLH连接后能诱导明显的抗体反应和显著的细胞毒作用.  相似文献   

5.
为鉴定鸭坦布苏病毒(duck Tembusu virus,DTMUV)的B细胞抗原表位,以纯化的DTMUV YY5株为抗原制备了2株单克隆抗体AE4和BD10,研究证实BD10为线性化表位,其结合的抗原表位位于E蛋白的第三结构域(DomainⅢ,D_Ⅲ)。将DTMUV E蛋白D_Ⅲ结构域基因截短为具有末端相互重叠的15段,与MBP融合表达后以单克隆抗体BD10进行肽库扫描,结果筛选出DTMUV一个B细胞线性表位_(385)LVGSGKGQI_(393)(EP385)。该表位原核融合表达产物免疫小鼠制备的抗体,能够和DTMUV E蛋白反应,表明EP385表位具有良好的免疫原性,可为DTMUV多肽疫苗的研制及特异血清学诊断方法的开发奠定基础。  相似文献   

6.
【目的】构建和制备具有较强抗原性的犬埃立克体(Ehrlichia canis)重组蛋白并研究其免疫学特性。【方法】利用ABCpred等在线软件预测分析犬埃立克体gp19、gp140和gp200等蛋白的优势线性抗原表位,构建多表位融合抗原基因E.canis-megp19及E.canis-megp-1,经PCR扩增后将其克隆至表达载体pET-32a(+)中,构建原核表达载体pET-32a(+)-E.canis-megp19和pET-32a(+)-E.canis-megp-1,经EcoRⅠ和XhoⅠ双酶切鉴定正确后转化至感受态细胞大肠杆菌BL21 (DE3)中,优化表达条件(IPTG诱导浓度、温度及时间),表达重组蛋白后检测其免疫原性。【结果】成功构建并合成了多表位融合抗原基因E.canis-megp19和E.canis-megp-1,其PCR产物在1.5%琼脂糖凝胶电泳后分别出现大小为414和429bp的片段;重组载体pET-32a(+)-E.canis-megp19和pET-32a(+)-E.canis-megp-1双酶切后得到了预期长度的目标片段;SDS-PAGE结果显示,当加入1.0mmol/L IPTG、37℃诱导8h后,E.canis-megp19及E.canis-megp-1重组蛋白均可大量表达,其分子质量分别为38和39ku;Western blot分析显示,该重组蛋白可被犬埃立克体阳性血清特异性识别,证实其具有良好的反应原性;小鼠免疫试验表明,该重组蛋白可诱导机体产生特异性抗体。【结论】制备的多表位融合重组蛋白能够高效地在大肠杆菌中表达且能够诱导机体产生特异性抗体。  相似文献   

7.
为通过E.coli表达系统制备猪细小病毒NS1抗原表位区蛋白,本试验利用DNAstar软件确定含有抗原表位的NS1蛋白片段,然后运用PCR方法从含有NS1基因的载体中扩增NS1抗原表位区基因片段,并将该基因片段插入到原核表达载体pGEX-4T-1中,构建成与GST标签融合的NS1抗原表位基因的表达载体pGEX-GST-NS1,将表达载体转化BL21大肠杆菌筛选出工程菌。经IPTG诱导表达NS1融合蛋白,经GST-琼脂糖凝胶磁珠分离纯化,制备出与GST融合的NS1抗原表位蛋白。经SDS-PAGE以及Western blot鉴定,制备的NS1融合蛋白分子量和预期一致,并且可以和抗GST标签抗体进行特异反应,表明NS1抗原蛋白已成功制备,为下一步NS1抗体的研制提供了必要的条件。  相似文献   

8.
利用生物信息学软件预测抗原表位,然后将筛选出的6个抗原表位基因片段分别与铁蛋白H亚基基因片段连接,并克隆到p ET-32a表达载体中,构建能融合表达Ace抗原表位和铁蛋白H亚基的重组质粒p ET-32aace1、p ET-32a-ace2、p ET-32a-ace3、p ET-32a-ace4、p ET-32a-ace5、p ET-32a-ace6,并经测序验证;优化诱导条件获得原核表达的重组蛋白后,用SDS-PAGE和Western Blot验证其相对分子质量大小和免疫原性;将重组蛋白进行纯化超滤,然后进行透射电镜成像检查。结果显示,本研究成功构建了7种原核表达载体;在IPTG诱导下获得了5种可溶性表达的融合蛋白,且均有较强的免疫原性;重组融合蛋白Ace1-H、Ace3-H、Ace5-H和Ace6-H在透射电镜下观察到了具有与天然铁蛋白类似的特殊中空结构,且其直径与天然铁蛋白纳米笼类似;而带多表位的重组蛋白Ace-H虽然也能自组装成纳米级颗粒,但没有中空核心,其直径也比天然铁蛋白略大。  相似文献   

9.
为筛选绵羊肺炎支原体(MO)免疫相关蛋白,以MO新疆流行株基因组DNA为模板,通过PCR扩增其EF-P基因,测序后对其编码蛋白进行分子特征分析;用生物信息学软件预测其抗原表位集中区编码片段;进一步将该基因片段克隆入pET-32a(+)中,构建原核表达载体pET-32a(+)-EF-P,将pET-32a(+)-EF-P质粒转化至感受态细胞Escherichia coli BL21(DE3)中,IPTG诱导目的蛋白表达后,检测重组蛋白反应原性和免疫原性。SDS-PAGE结果显示,EF-P重组蛋白分子质量为29.5ku;Western blot结果显示,该重组蛋白可被MO阳性血清特异性识别,证实其具有良好的反应原性;小鼠免疫试验结果显示,该重组蛋白可诱导机体产生特异性抗体,采用正向间接血凝方法检测效价可达1∶64,提示其具有较强的免疫原性。  相似文献   

10.
目的:通过生物信息学及蛋白分析软件等,寻找ETEC K88、K99菌毛蛋白的抗原表位。方法:通过生物信息学技术、DNAStar Protean蛋白分析软件及网络共享软件对ETEC K88、K99菌毛蛋白抗原性相关的参数进行预测分析,从而设计ETEC K88、K99菌毛蛋白的抗原表位多肽;采用腹腔注射的方式将合成的抗原表位多肽免疫小鼠,用ELISA法检测血清中产生的抗体,并对免疫小鼠进行了攻毒试验。结果:多肽免疫小鼠后均能诱导抗体产生,攻毒试验表明合成肽对小鼠具有保护作用。结论:成功预测了抗原表位,合成的表位多肽具有较好的抗原性。  相似文献   

11.
【目的】确定类猪圆环病毒P1 存在开放阅读框ORF2 和ORF3;【方法】采用Trizol 法,提取类猪圆环病毒 P1分子克隆转染PK-15细胞的总RNA,纯化之后,分别用P1 ORF2 和 ORF3 特异性引物进行RT-PCR,应用AxyPrepTM DNA 凝胶回收试剂盒回收PCR 产物,转化Trans5α 感受态细胞,挑取单菌落,经PCR检测为阳性后测序。同时,利用rapid-amplification of cDNA ends (RACE) 技术分别扩增P1 病毒 ORF2 和 ORF3 的5′-与3′-末端。另外,根据P1 ORF2 和ORF3 的序列预测其B细胞抗原表位,采用标准的逐步固相合成法合成表位肽,与载体蛋白KLH偶联后,免疫新西兰大白兔制备抗 P1 ORF2 和ORF3 的多克隆抗体。采用常规间接ELISA法检测分离血清效价,包被抗原用合成肽,450 nm 波长下测定,血清抗体效价为S/N ≥2.1的血清最高稀释度。 然后,用P1 双拷贝分子克隆转染PK-15细胞,通过免疫组化方法对该多抗与P1 的反应性进行检测,同时利用实时荧光定量PCR方法检测转染细胞中P1 的拷贝数。【结果】利用ORF2和ORF3特异性引物对P1 RNA 进行的RT-PCR,均能扩增出目的片段,回收测序大小分别为111 bp和128 bp,分别与P1 ORF2 和ORF3 进行同源性比较,序列同源性均为100%;RACE技术分析,得到P1 ORF2 的5′-和3′-RACE 末端分别为第11位(G) 和第168位(T),P1 ORF3 的5′-和3′-RACE 末端分别为第285位(T) 和第 579位(A)。根据预测结果,合成肽的氨基酸序列分别为ORF2:CLSRLPQSERPPGRW和ORF3:CVYPKVRERRVLKMP;用ORF2 和ORF3 表位肽与载体蛋白KLH 的偶联物免疫新西兰大白兔制备的多克隆抗体效价均达到1﹕512 000以上,并且能够与P1 病毒发生特异性显色反应,应用蓝色DAB显色试剂盒染色结果为紫蓝色,多数在细胞浆,少数在细胞核,而对照组细胞无显色反应。定量PCR检测结果显示,P1可以在转染P1双拷贝分子克隆的PK-15细胞中复制,并且转染后104 h 增殖量达最大。【结论】通过转录分析和免疫组化试验分别从转录和蛋白质水平上证实了类猪圆环病毒P1 存在ORF2 和ORF3。  相似文献   

12.
【目的】 比较纳米抗体、HCAbs与常规抗体之间在温度稳定性方面的差异,为研究HCAb的功能特性和骆驼适应极端环境的免疫特点提供参考。【方法】 从溶菌酶、蒜氨酸酶和丹毒丝菌表面抗原A 3种抗原免疫的新疆双峰驼血清中,采用Protein A和Protein G亲和色谱纯化IgG1、IgG2和IgG3 3种亚型抗体,并在大肠杆菌BL21(DE3)菌中表达和纯化3种纳米抗体。采用ELISA方法,测定经过22~90℃一系列热处理后、平衡至室温的各抗体与相应抗原的结合活性,以剩余抗原结合活性的百分比作为衡量抗体温度稳定性的参数。【结果】 3种抗原免疫后均能在骆驼激发明显的抗体反应。采用Protein A/G亲和色谱,从血清中纯化获得分子量分别为50 KD+25 KD、 46 KD和43 KD的IgG1、IgG2和IgG3亚型抗体。骆驼IgG2和IgG3重链抗体比IgG1具有更高的温度稳定性,其中IgG3表现出比IgG2对温度更高耐受的趋势。从细菌表达纯化的3种纳米抗体都表现出比重链抗体和常规抗体更高的温度稳定性。【结论】 抗体结构形式和分子大小可能显著影响了双峰驼抗体对温度的耐受性。  相似文献   

13.
[目的]分离和鉴定扩展莫尼茨绦虫(Moniezia expansa)电压门控钙通道β亚基(cavB)基因,预测蛋白二级结构和B细胞抗原表位,从而探讨Cavβ在寄生虫病治疗中所起的作用.[方法]构建扩展莫尼茨绦虫成虫cDNA文库,随机挑取重组阳性克隆进行测序,对部分序列进行引物步移法测序,获取全长cDNA序列;采用生物信息学方法对其对应的蛋白进行二级结构和B细胞抗原表位的预测.[结果]获得扩展莫尼茨绦虫Cavβ基因,全长946 bp,编码180个氨基酸,理论分子质量为19.788 8 kD,等电点为5.06,属于Ca_channel_B超家族.二级结构以无规则卷曲为主,结构预测存在4个可能的B细胞抗原表位.[结论]研究对于扩展莫尼茨绦虫Cavβ基因的获得和B细胞抗原表位的预测,为该基因功能的试验性鉴定工作奠定了基础.  相似文献   

14.
【目的】构建口蹄疫病毒VP1基因重组慢病毒载体FG9-VP1,并建立稳定表达VP1基因的BHK-21细胞系。【方法】采用RT-PCR技术从口蹄疫病毒材料中扩增出VP1基因,并将其连入慢病毒载体FG9中,经PCR、酶切和测序鉴定正确后,转染BHK-21细胞,96h后经流式细胞分选筛选GFP阳性细胞,细胞增殖后经WB检测VP1基因的表达。【结果】VP1基因重组慢病毒载体FG9-VP1测序正确,转染BHK-21细胞经流式细胞仪筛选的GFP阳性细胞后可稳定表达VP1基因。【结论】VP1基因重组慢病毒载体构建成功并获得了稳定表达VP1基因的BHK-21细胞系。  相似文献   

15.
猪瘟病毒石门株E2基因4个抗原结构域的原核表达   总被引:1,自引:1,他引:1  
【目的】对猪瘟病毒石门株E2基因进行原核表达,以期获得可溶性表达产物,为检测猪瘟抗体的ELISA试剂盒的研制奠定基础。【方法】用PCR技术扩增了重组S21质粒载体上的猪瘟病毒石门株E2基因的4个主要抗原结构域ABCD,A1A2,B和C。分别将4个片段克隆于pMAL-p2X载体中,经PCR、双酶切和测序鉴定,E2基因的4个主要抗原结构域片段的位置、大小和读码框均正确。将4个片段分别转化到表达菌TB1、BL21、BL21-CodonPlus(DE3)-RP和BL21(DE3)中,共得到16株重组表达菌,用IPTG进行诱导表达,对表达产物进行SDS-PAGE电泳和免疫印迹分析。【结果】E2基因的4个主要抗原结构域均可在这4种表达菌中表达,但以BL21-CodonPlus(DE3)-RP的表达效果最好,可表达出可溶性并且产量较高的目的蛋白。免疫印迹结果表明,表达的目的蛋白可以被猪瘟阳性血清和针对E2蛋白的单克隆抗体所识别。【结论】只表达目的基因的抗原结构域,可以缩短表达片段的长度,有利于获得可溶性目的蛋白,并且具有良好的血清学反应的特异性。  相似文献   

16.
【背景】非洲猪瘟(ASF)于2018年8月在中国首次出现,对养猪业造成了巨大危害,损失惨重。目前尚无安全有效的疫苗用来预防ASF,于是建立快速特异的检测方法对于防控ASF提供了有效的手段。【目的】制备非洲猪瘟病毒(ASFV)特异性单克隆抗体,建立ASF快速特异性的检测方法。为ASF的检测和防控提供借鉴技术手段。【方法】构建表达载体pET-28a-P30,通过原核表达系统获得ASFV P30重组蛋白,以纯化的P30蛋白为抗原免疫BALB/c小鼠,经过细胞融合和细胞亚克隆制备出ASFV P30蛋白特异性杂交瘤细胞株;对P30蛋白进行截短表达,利用Western Blot和间接酶联免疫吸附试验(iELISA)鉴定单克隆抗体所对应的抗原表位;并利用制备的单克隆抗体建立非洲猪瘟阻断ELISA抗体检测方法。【结果】通过双酶切和PCR验证,结果显示构建出重组载体pET-28a-P30,经测序其序列未发生突变;IPTG诱导后,P30重组蛋白主要表达在包涵体中,分子量约为33 kD。纯化的P30蛋白与弗氏佐剂1﹕1混合免疫小鼠,3次免疫后,小鼠血清效价达到1﹕102 400,说明表达的蛋白具有良好的免疫原性。经细胞融合和亚克隆,获得8株P30蛋白特异性杂交瘤细胞,Western Blot和间接免疫荧光试验(IFA)检测获得的8株单抗均具有良好的反应性。叠加试验显示8株单克隆抗体均针对相同的抗原位点;截短表达P30蛋白不同片段,选取制备的2-12B单克隆抗体与不同的截短P30蛋白反应,显示单克隆抗体的抗原表位区为187—194aa。利用2-12B单克隆抗体并经过条件优化,成功建立了ASF阻断ELISA抗体检测方法,检测了190份临床样品,并与商品化非洲猪瘟ELISA抗体检测试剂盒进行对比,两方法阳性符合率为90.91%,总符合率为96.32%。【结论】本研究成功获得ASFV P30蛋白,经过iELISA、Western Blot和IFA筛选出反应性良好的特异性单克隆抗体8株,抗原识别表位区为187—194aa。并利用制备的单克隆抗体建立了特异性高,敏感性好的ASFV阻断ELISA抗体检测方法,为ASF的检测及其防控提供了手段和支撑。  相似文献   

17.
【目的】分析定位Bt Cry1类毒素Cry1Ab、Cry1Ac、Cry1B、Cry1C、Cry1F的共性结构域,克隆并表达共性结构域蛋白,为筛选Bt毒素广谱抗体及建立广谱检测方法打下基础。【方法】利用生物信息学和分子模拟技术,通过SWISS-MODEL同源建模分别对5种Cry1类毒素进行三维建模,并结合Ramachandran plot、ERRAT和Verify3D方法评价模型构象的合理性。通过分析比对5种Cry1类毒素的三维结构,确定DomainⅠ区域作为5种Cry1毒素的共性结构域。以含Cry1Ac基因的苏云金芽孢杆菌库斯塔克亚种为模板设计引物,PCR扩增获得共性结构域DomainⅠ基因,将其经NcoⅠ和NotⅠ双酶切连接至原核表达载体pET-26b(+),构建原核表达载体pET-26b-DomainⅠ。重组质粒经菌液PCR、双酶切以及测序鉴定验证正确后,转化至E.coli BL21(DE3),经终浓度为1 mmol·L~(-1)的IPTG在20℃下诱导表达16h后检测共性结构域蛋白的表达情况。离心收集诱导表达的大肠杆菌菌液,进行超声波破碎处理,收集上清及沉淀,采用SDS-PAGE分析融合蛋白的表达。利用His-Trap HP镍亲和柱纯化上清中的可溶性融合蛋白,经SDS-PAGE电泳、Western blot和ELISA试验验证纯化的共性结构域蛋白的生物活性。【结果】基于氨基酸序列及三维空间比对分析,发现5种Cry1类毒素的DomainⅠ的序列一致性最高,而且它们的DomainⅠ三维结构几乎完全重合,确定DomainⅠ区域作为5种Cry1毒素的共性结构域,通过PCR、双酶切及测序鉴定成功构建原核表达载体pET-26b-DomainⅠ,经IPTG诱导表达、His-Trap HP镍亲和柱纯化获得了可溶性的DomainⅠ共性结构域蛋白,SDS-PAGE和Western blot证实表达的共性结构域蛋白的分子量约为33.4 kD,且能与抗His标签鼠单克隆抗体发生特异性反应,ELISA试验证实共性结构域蛋白与5种Cry1类毒素特异性抗体均具有很强的结合能力,抗原表位分析结果显示共性结构域蛋白具有和完整的Cry蛋白存在多个潜在抗原表位位点的特征,抗原表位区域所占的比例分别为48.4%和63.6%,表明共性结构域蛋白具有良好的免疫原性和免疫反应性。【结论】基于分子模拟与分子克隆技术,成功定位及表达纯化获得共性结构域蛋白,为下一步利用共性结构域为靶标分子制备广谱特异性识别Cry1类毒素抗体打下基础。  相似文献   

18.
【目的】研究与评价PEG模拟干旱胁迫下10个藜麦品种的萌芽期抗旱性。【方法】采用5%~30%不同浓度PEG-6000溶液模拟干旱胁迫条件。【结果】低浓度PEG-6000对藜麦种子萌发及根长具有促进作用,对茎长有一定的抑制作用。随着PEG-6000浓度增大,所有抗旱指标均下降。【结论】利用隶属函数分析得出,10个藜麦品种萌发期抗旱性强弱顺序为:YL2>YL1>YL7>YL3>YL9>YL5>YL10>YL6>YL8>YL4。为较好的反映藜麦品种在不同胁迫程度的耐受能力,将10个藜麦品种划分为三个抗旱级别:YL1、YL2、YL7为强耐旱品种; YL3、YL9为中等耐旱品种;YL4、YL5、YL6、YL8、YL10为弱耐旱品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号