首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
揭示现实管理条件下河北省太行山山前平原冬小麦高产(7 500~9 000 kg/hm2)、超高产(9 000 kg/hm2)小麦群个体发育及产量结构特征,可以为小麦持续高产稳产及超高产提供栽培技术调控理论数据支持。在2014~2017年冬小麦生长季,同时在河北省太行山山前平原冬小麦种植区的南部(邢台、邯郸)、中部(石家庄)和北部(保定),选择当地单产超过7 500 kg/hm2、9 000 kg/hm2的高产超高产典型地块,进行冬小麦群个体发育动态、产量以及产量结构特征指标调查与分析。结果表明:要实现单产9 000 kg/hm2以上,成熟期的小麦产量构成因素应达到单位面积穗数780万~790万穗/hm2、穗粒数32~34粒、千粒重42~45 g;实现单产8 250~9 000 kg/hm2,成熟期的小麦产量构成因素应达到单位面积穗数715万~750万穗/hm2、穗粒数32~34粒、千粒重42~43 g;实现单产7 500~8 250 kg/hm2,成熟期的小麦产量构成因素应达到单位面积穗数685万~695万穗/hm2、穗粒数31~32粒、千粒重41~44 g。  相似文献   

2.
【目的】探索河北省小麦超高产水平从9 000 kg·hm-2向10 000 kg·hm-2突破的途径,明确河北省10 000kg·hm-2以上超高产小麦的产量结构特点和各个生育时期的群体、个体特征,以及适宜的生态条件,为进一步开展可稳定实现10 000 kg·hm-2以上产量的河北省小麦超高产栽培技术体系的研究提供理论依据。【方法】于2010—2014年4个小麦生长季,在高产大田设置不同品种、氮肥基追比和追氮时期处理,结合其他超高产栽培技术措施,进行小麦超高产攻关研究。将4个生长季籽粒产量9 000 kg·hm-2以上的处理分为9 000—9 500、9 500—10 000和10 000 kg·hm-2以上3个水平,分析小麦产量从9 000 kg·hm-2提高到10 000 kg·hm-2以上,产量结构和各个生育时期群个体性状的变化,并结合土壤肥力数据和气象数据分析实现10 000 kg·hm-2以上产量适宜的生态条件。【结果】通过3个产量水平处理的比较,河北省小麦产量从90 00 kg·hm-2提高到10 000 kg·hm-2以上,公顷穗数变化较小,穗粒数在30—35粒的概率较大,粒重显著提高。产量水平从9 000—9 500 kg·hm-2提高至9 500—10 000 kg·hm-2时,干物质积累量明显增加,进一步提高至10 000 kg·hm-2以上时收获指数有所提高。穗数800万/hm2、穗粒数在30—35粒、千粒重43 g以上、成熟期干物质积累量22 000 kg·hm-2、收获指数为0.46是河北省10 000 kg·hm-2以上超高产小麦比较理想的产量结构和调控指标。10 000 kg·hm-2以上产量水平的小麦旗叶和倒2叶叶面积均小于20 cm2,孕穗期叶面积指数为7.69—8.24,均低于9 000—9 500 kg·hm-2产量水平,但花后20 d叶面积指数在4以上,花后30 d在2以上,均高于后者。小麦产量从9 000 kg·hm-2到10 000 kg·hm-2以上,土壤基础肥力和施肥量变化较小,生育期降水量和灌水量也未增加,但小麦全生育时期特别是开花至成熟阶段的积温和光照时数均有所增加。【结论】河北省实现小麦产量从9 000 kg·hm-2到10 000 kg·hm-2的突破,公顷穗数的增产潜力较小,提高穗粒数和粒重应作为主攻方向。大小适中、后期衰老缓慢的高质量群体是实现10 000 kg·hm-2超高产的保证,较高的基础肥力以及积温和光照较好的年型是实现10 000 kg·hm-2超高产的基础。  相似文献   

3.
江苏省小麦品种的产量性状分析   总被引:2,自引:0,他引:2  
对江苏省1982-2007年审定的84个小麦品种在区域试验中的产量性状进行了分析,结果表明:品种间产量差异很大,84个小麦品种产量幅度为4 425.75~8 181.15 kg/hm2,平均6 136.44 kg/hm2,与对照品种相比,平均增产6.20%.不同区域类型品种的产量由北向南逐渐递减,淮北品种的平均产量为6 687.01 kg/hm2,比淮南品种平均高1 227.10 kg/hm2.江苏省小麦产量育种取得了突破性进展,26年来年均递增1.4%,淮北品种年均递增0.8%.产量7 500 kg/hm2以上的淮北品种产量构成因素为:穗数600万/hm2左右,穗粒数33粒以上,千粒重43 g以上;淮南品种进展更为显著,产量 6 750 kg/hm2以上的淮南品种产量构成因素为:穗数480万/hm2左右,穗粒数38粒以上,千粒重40 g 以上.  相似文献   

4.
小麦06-135超高产群体形成特征及栽培技术研究   总被引:1,自引:0,他引:1  
为探索小麦06-135的超高产群体形成特征及配套栽培技术,通过高产攻关田和播期、密度及施氮量等试验,分析高产田产量构成及群体形成特征。结果表明:小麦06-135产量8 000 kg/hm~2的群体形成特征为穗数435万—475万穗/hm~2,穗粒数44—46粒/穗,千粒重42—43 g;冬前茎蘖数/最终穗数约1.1,高峰苗/最终穗数约2.0,分蘖成穗率约38.5%,分蘖穗比例约60%。小麦06-135高产栽培的适宜播期为10月20日—28日,适宜基本苗为165万株/hm~2,适宜施氮量为307.30 kg/hm~2。  相似文献   

5.
兖州市小麦超高产栽培技术研究   总被引:5,自引:0,他引:5  
综合多年试验结果,研究明确了超高产(10 000 kg/hm2)小麦的土壤基础养分指标、稳产超高产的安全播种期、中多穗型和中大穗型品种产量突破10 000 kg/hm2的限制因子、依据群体变化动态和叶龄相结合的追肥策略、公顷产10 000 kg小麦的关键技术指标和小麦超高产栽培技术措施。  相似文献   

6.
通过对25块不同类型双晚秀水52群体主要经济性状与产量的相关及通径分析,表明在各经济性状中有效穗对产量的决定作用最大,其次是穗总粒数,再次是结实率。通过对高产群体经济性状特征分析,得出双晚秀水52产量在8 250kg/hm2以上主要性状95%置信区间为:株高91.34~94.70cm,穗长14.17~14.51cm,有效穗409.05~424.65万穗/hm2,每穗总粒数86.70~91.81粒,结实率89.46%~92.29%,千粒重25.38~25.67g,预估产量8 481.5~8 735.9kg/hm2。通过有效穗、穗总粒数、结实率与产量的线性回归分析,建立了三性状与产量相关的线性回归方程。当有效穗416.85万穗/hm2、穗总粒数89.25粒、结实率90.88%时,预估产量为8 608.7kg/hm2左右。  相似文献   

7.
关中地区小麦超高产育种问题探讨   总被引:6,自引:0,他引:6  
关中地区当前小麦超高产育种的产量指标为 10 0 0 0 kg/ hm2 。产量性状和光合生理性状是决定品种产量潜力的关键性状 ,超高产育种重点应进行单位面积穗数、穗粒重、穗粒数、花后 2 1~ 30 d平均光合速率、花后30 d绿叶面积、灌浆高峰期单穗平均日增重、灌浆高峰持续时间、生物学产量、收获指数等 9个性状的遗传改良。集优交配法是选育超高产品种的有效育种技术。为了适应超高产育种的纵深发展要求 ,要加强光合生理特性、性状遗传规律等基础理论研究和超高产大穗材料创新工作  相似文献   

8.
通过不同密度试验,研究密度对弱筋小麦扬麦9号优质高产群体质量和株型指标的调控效应.结果表明:①弱筋小麦扬麦9号以基本苗240万株/hm2最能建立合理的优质高产群体结构;②扬麦9号产量>7 500 kg/hm2优质高产株型指标和群体质量指标为:上三叶面积顺序为倒二叶>剑叶>倒三叶,株高为80 cm左右,穗下节间/节间总长为35.5%左右,(穗下节间+穗长)/株高为43.6%左右,株高构成指数0.563,每穗43粒左右,单穗重1.55 g左右,花后干物质积累量4 000~4 500 kg/hm2,高峰苗1 100万/hm2左右,成穗数500万/hm2左右;LAI的动态指标是越冬始期约0.9,拔节期约3.0,孕穗期出现最大值7.0,开花期为4.5~5.0.  相似文献   

9.
南粳44超高产形成规律与关键栽培技术研究   总被引:6,自引:1,他引:5  
通过专题试验与示范相结合的方法,研究南粳44超高产形成规律和关键栽培技术,为大面积推广应用提供依据.结果表明:(1)南粳44是一个具有超高产潜力的品种,超高产群体的穗数、每穗粒数发展变化空间较大,每穗粒数对产量构成因素有较大的限制作用,产量构成因素对产量直接贡献大小的顺序依次为穗数>每穗粒数>结实率>千粒重,增穗增产效果最好.在满足适宜穗数的基础上,应着力提高每穗粒数和千粒重.本试验条件下,11 250 kg/hm2以上产量及其构成因素95%的置信区间为:穗数1 hm2 2.675×106~2.875×106,每穗粒数150.2~166.2粒,结实率89.8%~91.6%,千粒重28.9~29.6 g,理论产量为11 425.5~11 728.5 kg/hm2.(2)旱育稀植条件下,南粳44的基本苗控制在1 hm2 7.2×105~8.1×105,施氮量315 kg/hm2左右时,易获得超高产;全量麦秸机械还田塑盘抛秧条件下,南粳44的施氮量285~315 kg/hm2,基本苗为1 hm2 9.75×105,密度和施氮量较为协调,易获得超高产.  相似文献   

10.
试验以大穗型(450万穗/hm2左右)、中间型(525~600万穗/hm2)、多穗型(675万穗/hm2左右)品种为研究对象,通过三种类型小麦品种产量表现,筛选适宜胶东半岛种植且大面积实现9750 kg/hm2超高产水平的冬小麦品种,筛选结果以烟农24、烟2070为代表的多穗型品种为首选。试验系统分析了三种类型小麦群体的动态变化特点,指出胶东半岛多穗型品种9 750 kg/hm2超高产群体质量指标:每公顷成穗720万,起身期分蘖成穗率45%,穗粒数40粒,千粒重38 g,最大叶面积系数为8.6,高效叶面积率75%,有效叶面积率95%以上。  相似文献   

11.
通过多元相关、多元回归方法 ,分析了山西中部晚熟冬麦区不同水肥条件下小麦产量构成因素 ,提出山西中部地区小麦高产育种的产量要素组成。小麦生产要达到 6 0 0 0kg/hm2 以上的高产水平 ,其产量要素的组成必须按照基本苗 375万~ 4 50万株 /hm2 ,穗数 6 70万~ 750万穗 /hm2 ,穗粒数 2 5~ 2 8粒 ,千粒重 35~ 4 5g的指标进行鉴定和选育 ;小麦产量在 4 50 0~ 6 0 0 0kg/hm2 水平上 ,有多种增产途径 ,但都不能显著增加或减少某一因素 ,以保证足够的穗数为基础 ,稳定穗粒数 ,提高千粒重效果最佳  相似文献   

12.
为了明确长期施用磷肥对冬小麦产量、吸氮特性和土壤肥力的影响,通过21年的黄土高原旱地长期定位肥料试验,测定了冬小麦每株有效小穗数、穗粒数、成穗数、千粒重和干物质量以及植株和土壤中的氮、磷养分含量。结果表明,合理施用磷肥(45~135 kg/hm2)能提高冬小麦穗粒数和千粒重,并能显著提高每株有效小穗数、成穗数和冬小麦抽穗期后干物质累积量,继而显著提高产量,其中当磷肥施用量为135 kg/hm2时,产量最高,为2 869.0kg/hm2,但磷肥施用量过大(达到180 kg/hm2)时,成穗数和抽穗期后干物质累积量显著降低,导致产量显著下降;冬小麦的氮素累积动态呈先增加后下降的趋势,增施磷肥能增加冬小麦吸氮量,但到成熟时,冬小麦地上部分出现氮素损失,损失量达13.4%~44.2%;长期施用磷肥能增加土壤有机质和氮素含量,并显著提高土壤磷素含量,其中全磷含量增加10.7%~64.5%,速效磷含量增加234.6%~667.3%。长期合理施用磷肥,能提高冬小麦产量、吸氮量以及土壤中有机质和氮磷养分含量。  相似文献   

13.
冬小麦轮选987的生育特性及节水高产栽培技术研究   总被引:2,自引:0,他引:2  
[目的]明确冬小麦轮选987的高产潜力。[方法]在河北省定兴县大田限水条件下,对冬小麦轮选987群体生长发育动态及节水高产栽培技术进行了研究。[结果]轮选987在有机质18.3g/kg,碱解氮105.0mg/kg,速效磷26.0mg/kg,速效钾104.0mg/kg的试验地上种植,全生育期只灌3水,实现了8352.7kg/hm^2的产量水平,产量构成因素为:总穗数792.8万/hm^2,穗粒数26.4粒,千粒重45.7g。主要群体指标为:孕穗期叶面积指数达最高值,平均为6.90,开花后叶面积指数缓慢下降;生物产量为19172.7kg/hm^2,经济系数为0.436。[结论]轮选987品种适应性强,增产潜力大,适宜在河北省定兴县及保定市北部冬麦区进行推广种植。  相似文献   

14.
[目的]明确不同种植密度对南疆滴灌冬小麦生长特性与产量构成的影响。[方法]以新冬20为供试材料,设置3种种植密度,对其群体、个体生长性状及产量构成进行调查。[结果]随生育进程的发展,总茎数与叶面积指数呈现先增加后减少的趋势,而干物质积累量则持续增加;最大总茎数在拔节期出现,单株叶面积和群体LAI最大值在抽穗-扬花期。随密度增加,最高总茎数、株高、单株最大叶面积、群体最大LAI、单株和群体最大干物质积累量均呈增加趋势,其中350万株/hm2密度处理下的总茎数和单株干物质积累量变化较大,而650万株/hm2密度处理的单株叶面积和群体LAI变化较大,500万株/hm2密度处理的群体干物质积累量变化较大,且产量构成因素均达到最大,产量最高达8 472.49 kg/hm2。[结论]在南疆地区,为了获得高产高效,冬小麦密度应控制在500万株/hm2时较好。  相似文献   

15.
播期密度对不同小麦品种群体茎数及产量的影响   总被引:13,自引:0,他引:13  
参照四水平五因素正交L16(45)设计,研究品种、播期与密度对小麦总茎数和产量及产量构成因素的影响。结果表明,冬前,密度对小麦基本苗影响最大,播期对分蘖数和总茎数影响最大;春季,品种对单株茎数、总茎数和成穗数影响最大。品种对产量三要素影响显著,播期对穗数和千粒质量影响显著,对穗粒数影响不显著,密度对千粒质量影响显著,对穗数和穗粒数影响均不显著。播期对小麦产量影响最大,其次为品种,密度影响最小。适宜的播期在10月4日至10月10日,随着播期后移,小麦产量明显下降,中麦895是本试验中获得高产的最优品种。合理的种植密度为210万~270万/hm2,小麦处于最佳品种、播期、密度组合时,小麦冬前、春季群体总茎数最多,小麦获得最高产,产量达9 000kg/hm2。  相似文献   

16.
群体密度对冬油菜产量和经济性状的影响   总被引:20,自引:4,他引:16  
研究了西北旱寒区大田条件下不同种植密度对冬油菜越冬率、产量及其构成因素、结角层结构、含油率等的影响。结果表明,群体密度在120万株/hm2~60万株/hm2,越冬率可达到80%以上。产量随种植密度增大而降低,60万株/hm2、90万株/hm2、120万株/hm2、150万株/hm2的产量分别为3 160.05 kg/hm2、3060.00 kg/hm2、2 860.05 kg/hm2、2 431.05 kg/hm2。随着密度的增加,分枝部位增高,单株总分枝数减少,其中二次分枝减少大于一次分枝,主花序长度减少,角长、千粒重、单株产量等均降低。含油率也随种植密度增大而降低,60万株/hm2、90万株/hm2、120万株/hm2、150万株/hm2的含油率分别为43.12%、41.91%、41.93、38.9%,以60万株/hm2含油率最高,达到43.12%。在西北旱寒区,冬油菜合理的群体密度为60万株/hm2~90万株/hm2。  相似文献   

17.
泛麦5号9000kg/hm2机械化栽培技术为:秸秆还田、配方施肥、精细整地、合理密植、及时浇水、综防病虫、化控化除、增施叶肥。技术指标为:基本苗150万~225万/hm2,冬前分蘖1500万/hm2,最高分蘖1800万/hm2,有效穗675万/hm2,穗粒数35,千粒重45g。  相似文献   

18.
裘敏  魏亦勤  张双喜  李红霞  刘旺清 《安徽农业科学》2007,35(36):11784-11784,11797
[目的]探究优质专用型小麦品种产量潜力的发挥,为大面积推广,实现优质高产高效提供技术指导。[方法]在中等肥力水平下,设450万、525万、600万、675万、750万粒/hm25个密度处理,研究密度对面条型小麦品种宁春35号产量的影响。[结果]不同密度处理下,宁春35号各阶段发育进程和株高的遗传性相对稳定;除450万粒/hm2处理外,其他处理结实小穗数随密度增加而下降;有效穗数随密度增大而增加,穗粒数、穗粒重和千粒重随密度的增加而下降;450万粒/hm2处理的千粒重最高36.8g,产量也最高,为5965.5kg/hm2,密度为600万粒/hm2的产量次之,其余处理随密度的增加产量呈下降的趋势。[结论]中等肥力水平下,宁春35号较为理想的密度是450万~600万粒/hm2,有利于提高群体和个体质量,夺取高产。  相似文献   

19.
肖军  加孜拉 《安徽农业科学》2014,(26):8915-8918
[目的]研究滴灌下水肥耦合对北疆冬小麦生理生长与产量的影响,确定北疆滴灌冬小麦最佳水肥施用量.[方法]供试作物为当地主栽小麦品种新冬8号.采用2因素3水平设计,2因素为灌水量和施氮量,灌水量3个水平分别为2 700、3 600、4 500 m3/hm2,施氮量3个水平分别为150、450、750 kg/hm2;对照为常规畦灌处理,灌水4次,灌水量为3 600 m3/hm2,施肥量为450 kg/hm2.[结果]滴灌和畦灌条件下冬小麦株高变化趋势为返青分蘖期至抽穗期急剧增长,抽穗后株高增长相对缓慢;拔节期水分增加对小麦株高的影响较大;在相同灌水量的情况下,冬小麦株高随着施氮量的增加而增大;在相同施氮量的情况下,滴灌冬小麦株高随着灌水量的增加而增大.滴灌和畦灌条件下,冬小麦叶面积指数(LAI)在生育期内呈正态曲线变化,随着小麦生育期推进LAI呈先升后降的变化趋势,孕穗期LAI最高;在相同灌水量的情况下,随着施氮量的增加,LAI也增大;在相同施氮量的情况下,随着灌水量的增加,LAI随着增大;水肥耦合对小麦产量、穗数、千粒重和质量影响较大,但对穗粒数的影响不显著.[结论]该研究可为大面积推广冬小麦滴灌技术和制定合理的灌溉施肥管理措施提供科学依据.  相似文献   

20.
[目的]筛选适合淮北地区种植的具有超高产潜力的小麦品种。[方法]于2006~2007和2007~2008年2个年度田间试验中分别对26个小麦供试品种的产量性状、分蘖特性、养分吸收特性及部分生理生化特性进行测定与分析。[结果]26个小麦供试品种中,烟农19、皖麦52和周麦18是适合淮北地区种植的具有超高产(9000kg/hm2)潜力的小麦品种。对各品种的生理特性分析发现,超高产小麦品种的茎蘖数为1300万~1500万/hm2;在各生育阶段干物质积累量较其他品种多;返青前,叶片叶绿素含量与其他品种无显著差异,但返青后则高于其他品种;超高产小麦品种形成100kg籽粒所消耗的N和P2O5量较其他品种多,而消耗的K2O量较其他品种少。[结论]该研究为淮北地区超高产小麦品种的选育及生产提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号