首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
嘧菌酯在黄瓜和土壤中的残留消解动态及最终残留研究   总被引:1,自引:0,他引:1  
通过两年两地的田间试验和气相色谱分析,研究了嘧菌酯在黄瓜和土壤中的残留消解动态及最终残留量。结果表明,嘧菌酯在黄瓜和土壤中的消解半衰期分别为2.8~3.0 d、8.3~12.3 d,属于易降解、低残留的农药。在180~270 g(a.i).hm-2的施药水平下,施药3~4次,每次施药间隔期为7 d,施药后距采收间隔期为1、3、5、7 d,嘧菌酯在黄瓜中的残留量,南宁市为0.039 2~0.213 5 mg.kg-1,上海市为0.017 2~0.182 6 mg.kg-1;嘧菌酯在土壤中的残留量,南宁市为0.203 2~0.945 6 mg.kg-1,上海市为0.205~1.440 1 mg.kg-1。  相似文献   

2.
通过两年两地的田间试验和气相色谱分析,研究了嘧菌酯在黄瓜和土壤中的残留消解动态及最终残留量。结果表明,嘧菌酯在黄瓜和土壤中的消解半衰期分别为2.8~3.0 d、8.3~12.3 d,属于易降解、低残留的农药。在180~270 g(a.i).hm-2的施药水平下,施药3~4次,每次施药间隔期为7 d,施药后距采收间隔期为1、3、5、7 d,嘧菌酯在黄瓜中的残留量,南宁市为0.039 2~0.213 5 mg.kg-1,上海市为0.017 2~0.182 6 mg.kg-1;嘧菌酯在土壤中的残留量,南宁市为0.203 2~0.945 6 mg.kg-1,上海市为0.205~1.440 1 mg.kg-1。  相似文献   

3.
溴菌腈在苹果和土壤中的残留消解动态研究   总被引:1,自引:0,他引:1  
采用田间试验及气相色谱检测方法,研究了溴菌腈在苹果和土壤中的残留消解动态.结果表明,溴菌腈在苹果和土壤中消解较快.在苹果中半衰期为0.9~1.0 d,药后14 d消解90%以上;在土壤中的半衰期为0.8~1.2 d,药后21 d消解90%以上.25%溴菌腈可湿性粉剂,施药浓度2000~4000 mg·kg-1(有效成分500~1000 mg·kg-1),施药3~4次,药后7、14、21 d苹果和土壤中残留量均未超过0.1 mg·kg-1.  相似文献   

4.
多菌灵在草莓与土壤中的残留动态研究   总被引:2,自引:0,他引:2  
采用高效液相色谱(HPLC)分析方法,研究了多菌灵在草莓与土壤中的消解动态和最终残留.分析结果表明,多菌灵最低检出浓度为0.05mg·kg-2,添加浓度在0.05~2.0mg·kg-2范围内,回收率为81.6%~102.6%,变异系数为1.44%~5.35%.田间试验结果表明,多菌灵推荐浓度和加倍浓度在草莓中的消解动态方程分别为C=3.212e-0.1354t、C=8.8103e-0.1379t,土壤中的消解动态方程分别为C=2.941 1e-0.1011t、C=6.1733e-0114 4t.多菌灵消解较快,草莓中的消解半衰期为4.2~6.7d,土壤中的消解半衰期为5.4~7.3d.加倍浓度和推荐浓度各施药2次,30d后残留量均降至0.1mg·kg-1以下,低于多菌灵在果蔬中最大允许残留量(MRL)0.5mg·kg-1.  相似文献   

5.
采用田间试验的方法,研究了哒螨酮在柑桔及土壤中的残留动态,应用气相色谱法测定了哒螨酮在柑桔和土壤中的残留量.结果表明,哒螨酮在柑桔和土壤中消解较快,其半衰期分别为3.53~13.50d和3.13~10.53d;10%苯丁·哒乳油兑水稀释1 500倍(哒螨酮浓度为33.3mg·L-1),使用3次,末次施药20d后,哒螨酮在柑桔肉残留量为未检出,在柑桔皮中为未检出~0.082 3 mg·kg-1,在土壤中为未检出~0.078 3 mg·kg-1.该药属易分解农药(T1/2<30 d),按推荐使用剂量使用是安全的.  相似文献   

6.
运用超高效/压液相色谱-串联质谱联用仪(UPLC-MS/MS)建立了异草酮在大豆、大豆植株和土壤中的残留分析方法。研究大豆地环境中异草酮的消解动态和最终残留,大豆、大豆植株和土壤样品经乙腈提取,硅镁型吸附剂柱层析净化后,用UPLC-MS/MS检测。方法最小检出量为1.0×10-11g;最低检出浓度大豆为0.002 mg·kg-1,大豆植株为0.004 mg·kg-1,土壤为0.001 mg·kg-1;平均添加回收率为87.9%~105.1%,变异系数在3.4%~10.1%。进行室外田间试验,研究异草酮在大豆、大豆植株和土壤中的残留消解动态,试验结果表明,在大豆植株和土壤中的消解半衰期分别为5.5 d和3.9 d;按推荐剂量(2 250mL·hm-2)喷雾,施药1次,最后1次施药距采收间隔期为90 d时,异草酮在土壤和大豆中的最终残留量均低于0.05 mg·kg-1。  相似文献   

7.
多菌灵在水稻及土壤中的消解动态和残留规律研究   总被引:1,自引:0,他引:1  
采用田间试验方法,研究了多菌灵在稻田水、土壤和稻秆中的消解动态,测定了多菌灵在水稻和土壤中的最终残留量.样品采用甲醇和稀盐酸的混合溶液提取,经液-液分配净化,HPLC紫外分析测定.结果表明,田水、土壤、稻秆、谷壳、糙米中多菌灵添加浓度为0.05~ 1.0 mg·kg-1时,平均回收率为83.16%~95.44%,变异系数在1.23%~5.32%之间,方法的最低检测浓度为:田水0.005mg·L-1,土壤0.005 mg· kg-1,稻秆0.050 mg·kg1-,谷壳0.050 mg·kg-1,糙米0.025 mg·kg-1.多菌灵在田水、土壤和稻秆中的消解动态均符合一级动力学方程,半衰期分别为2.53~3.41 d、6.20~7.27 d、3.27~3.91 d,原始沉积量与施药量、施药次数密切相关.以231 g·hm-2和346.5 g·hm-2间隔7d施用多菌灵2次和3次,末次施药21d后多菌灵的最高残留量为:土壤未检出(≤0.005 mg·kg-1),稻秆0.524 mg·kg-1,谷壳0.528 mg· kg-1,糙米未检出(≤0.025 mg·kg-1).多菌灵在稻秆和谷壳中的残留量相对较高,以该稻秆和谷壳作为饲料有一定的风险;多菌灵在糙米中的残留量低于我国和食品法典委员会(CAC)及日本的最大残留限量(MRL)标准.  相似文献   

8.
土壤和番茄中氯虫苯甲酰胺的残留检测与消解动态研究   总被引:8,自引:1,他引:7  
研究和建立了氯虫苯甲酰胺在土壤和番茄中的液相色谱检测方法,并采用田间试验方法研究了氯虫苯甲酰胺在土壤和番茄中的残留消解动态规律.结果表明,采用甲醇溶液浸泡提取,减压浓缩后用二氯甲烷萃取,浓缩后用二氯甲烷定容,液相色谱仪带二极管阵列检测器(DAD)测定,外标法定量.在0.05~0.5 mg·kg-1添加水平范围内,土壤和番茄中氯虫苯甲酰胺的添加平均回收率为91.43%~100.91%,变异系数为3.53%~9.71%;土壤和番茄中氯虫苯甲酰胺的最小检出最均为1.0×10-7g,最低检出质量分数为0.005 mg·kg-1.田间残留试验表明,氯虫苯甲酰胺在土壤和番茄中残留消解动态规律符合方程G=C0e-k1;150 g-L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂在土壤和番茄中的消解半衰期分别为6.55~11.49d和3.82~10.70d.最终残留试验研究表明,在番茄上手动喷雾施药150g·L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂,按推荐剂量和1.5倍推荐剂量施药,兑水喷雾处理2~3次,施药间隔为7d,最后一次施药距采收间隔7d时,氯虫苯甲酰胺在番茄中最高残留量均小于0.3mg·kg-1.参照欧盟等规定的氯虫苯甲酰胺在番茄中最大残留限量标准,按照推荐剂量和1.5倍推荐剂量施药2~3次,距最后一次施药7d时,氯虫苯甲酰胺在番茄上残留是安全的.  相似文献   

9.
采用田间试验方法,研究了抑食肼在水、土和水稻植株中的消解动态以及在收获水稻和土壤中最终残留量。样品采用乙腈提取、Al2O3柱净化、HPLC紫外分析测定。结果表明,方法的回收率为73.40%~107.5%,变异系数在3.60%~12.6%之间,方法的最低检出浓度为:田水0.005mg·L-1,土壤0.02mg·kg-1,稻秆0.05mg·kg-1,谷壳0.05mg·kg-1,米粉0.05mg·kg-1。抑食肼在田水、土壤和水稻植株中的半衰期分别为2.5~2.7d,7.1~11d,9.4~10d。以300ga.i·hm-2和600ga.i·hm-2喷施抑食肼2次和3次,抑食肼在收获稻秆中的最终残留量在0.43~12mg·kg-1间,最后一次施药后15d最高残留为12mg·kg-1,30d最高为7.4mg·kg-1;谷壳中的最终残留量为0.58~10mg·kg-1,其中15d最高残留为10mg·kg-1,30d最高为3.6mg·kg-1;米粉中多数未检出(<0.05mg·kg-1),最高残留量为0.14mg·kg-1。抑食肼在稻秆、谷壳中的残留量相对较高,以该稻秆、谷壳作为饲料有一定的风险。  相似文献   

10.
麦田环境中三唑醇残留行为及其安全性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
通过田间试验,研究麦田中15%三唑醇WP在小麦及土壤中的残留消解情况.结果表明,三唑醇在麦苗中消解速度较快,土壤中相对缓慢,麦苗中半衰期为3.82~6.02 d,土壤中为17.17~24.92 d;2年试验结果中,15%三唑醇WP按照900和1 800 g·hm-2,施药2次、3次,末次施药距收获间隔21 d,麦粒中三唑醇残留量低于0.2mg·kg-1,麦杆中低于5.0 mg·kg-1,该药按推荐剂量使用是安全的.  相似文献   

11.
建立了气相色谱(GC)分析黄瓜及土壤中苯酰菌胺残留的方法。样品经乙腈提取,碱性氧化铝柱净化后用气相色谱仪的电子捕获检测器(GC/ECD)检测。结果表明:苯酰菌胺在0.02~0.00 mg·L-1范围线性关系良好,相关系数为1;苯酰菌胺在黄瓜及土壤中的最低检出质量分数为0.1 mg·kg-1 ;黄瓜中苯酰菌胺的平均添加回收率为89.%~96.%,变异系数为4.%~10.%;土壤中苯酰菌胺的平均添加回收率为90.%~97.%,变异系数为2.%~4.5。苯酰菌胺在黄瓜及土壤中的消解动态符合一级动力学方程,在黄瓜中的消解半衰期为1.~3. d,土壤中的消解半衰期为1.~5. d。  相似文献   

12.
为了评价双炔酰菌胺在荔枝上的残留动态并建立合理使用技术,在南宁、海口两地同时进行了双炔酰菌胺在荔枝上的残留动态试验.结果表明,双炔酰菌胺在荔枝果实(全果)中的半衰期为6.2~7.3d,在土壤中的半衰期为6.6~10.1d;双炔酰菌胺在荔枝全果中的最终残留量为未检出~0.055 mg·kg-1,果肉中的最终残留量为未检出...  相似文献   

13.
噻唑膦在西瓜及土壤中的残留动态研究   总被引:2,自引:0,他引:2  
为评价噻唑膦在西瓜上的残留动态并制定合理的使用方法,在天津、南京两地同时进行了噻唑膦在西瓜上的残留动态试验。结果表明,在试验条件下,噻唑膦在西瓜中无明显消解规律,在土壤中的半衰期为8.9~9.3d;噻唑膦在西瓜(全果)中的最终残留量为未检出~0.020mg·kg-1,瓜皮中的最终残留量为未检出~0.030mg·kg-1,瓜肉中的最终残留量均为未检出。10%噻唑膦颗粒剂在西瓜上合理使用方法为:以2250~3000g(a.i.)·hm-2,土壤撒施1次,噻唑膦在西瓜中最高残留限量(MRL值)推荐值为0·5mg·kg-1。  相似文献   

14.
杀螺胺乙醇胺盐在水稻和稻田中的残留及消解动态   总被引:1,自引:0,他引:1  
为明确杀螺胺乙醇胺盐在稻田系统的使用安全性,采用田间试验方法,研究了杀螺胺乙醇胺盐在长沙、杭州、贵阳三地水稻中的消解动态和最终残留.结果表明,该化学灭螺药在三地的稻田水、土壤、稻秆中消解半衰期分别为1.69~3.01、8.66~13.86 d和5.33~7.70 d.施药后62d糙米中杀螺胺乙醇胺盐的最终残留量均<1.00 mg· kg-1,水稻稻秆中含量最高.在水稻中使用杀螺胺乙醇胺盐70%可湿性粉剂,按推荐剂量900g·hm-2(630 a.i.g·hm-2),最多施药2次,杀螺胺乙醇胺盐在水稻上的安全期为62d.  相似文献   

15.
采用室内培养法和土柱法,研究了2-羟基-1,4-萘醌在土壤中的降解作用和淋溶行为。结果表明,2-羟基-1,4-萘醌在灭菌和非灭菌土壤中的降解半衰期分别为3.47~6.98d和0.42~0.53d,且随着2-羟基-1,4-萘醌浓度增加,其降解半衰期延长。说明微生物对其降解过程起主导作用。参考POPs国际公约关于化学品持久性的定义,2-羟基-1,4-萘醌在土壤中属于易降解有机物。通过2-羟基-1,4-萘醌在土壤中的淋溶研究发现:当其添加浓度为5mg·kg-1和10mg·kg-1时,各处理土层中均未检出2-羟基-1,4-萘醌;当添加浓度为20mg·kg-1时,仅在0~10cm土层样品中检测到2-羟基-1,4-萘醌。与未老化土壤相比,2-羟基-1,4-萘醌在老化土壤中的淋溶作用减弱。  相似文献   

16.
氯氟吡氧乙酸在小麦及土壤中残留的分析方法   总被引:1,自引:0,他引:1  
采用氢氧化钠-甲醇溶液提取,二氯甲烷萃取,定量甲醇、浓H2SO4条件下酯化,气相色谱法测定小麦及土壤中的氯氟吡氧乙酸。氯氟吡氧乙酸质量浓度在0.01~1.0 mg.L-1之间线性关系良好。在添加浓度0.01~0.8 mg.kg-1下,植株、土壤和籽粒中氯氟吡氧乙酸的平均回收率分别为72.3%~86.7%、83.6%~95.8%和77.7%~87.3%,变异系数分别为3.02%~8.59%、2.87%~8.46%和2.75%~7.61%。氯氟吡氧乙酸的最小检测量为1.0×10-11g,在植株、土壤和籽粒中最低检出浓度均为0.01 mg.kg-1。该方法的准确性、精确性和灵敏度均满足农药残留分析的要求。  相似文献   

17.
2种不同剂型阿维菌素在土壤和田水中的消解动态   总被引:3,自引:0,他引:3  
研究了施用乳油和微乳剂2种不同剂型的阿维菌素在土壤和田水中的消解动态。结果表明:(1)阿维菌素残留检测方法在添加浓度为0.001~1.000 mg·kg-1时,平均回收率为86.1%~105.2%,变异系数为4.3%~8.2%,符合残留检测标准;(2)推荐剂量下施药,微乳剂在试验三地的半衰期分别为土壤2.6~2.7 d,田水2.7~4.5 d;乳油在试验三地的半衰期分别为土壤11.2~13.1 d,田水3.6~7.4 d。同一施药条件下,乳油的半衰期均大于微乳剂的半衰期。  相似文献   

18.
为评价毒死蜱在苹果上使用的安全性,并建立其使用规范,对毒死蜱在苹果及其种植土壤中的残留及消解动态进行研究。样品经乙腈提取,液液分配后,用气相色谱仪FPD检测器测定,外标法定量。毒死蜱在苹果和土壤中半衰期分别为3.6~8.2 d、5.8~11.5 d;检测的苹果中的最终残留量为0.001~0.019 mg·kg-1,土壤中的最终残留量为0.001~0.005 mg·kg-1。  相似文献   

19.
乙嘧酚在黄瓜和土壤中的消解动态研究   总被引:3,自引:0,他引:3  
利用高效液相色谱仪及田间试验方法,建立了乙嘧酚在黄瓜和土壤中的残留分析方法,研究了乙嘧酚在黄瓜和土壤中的残留消解动态,对影响残留分析方法的主要参数进行了优化.黄瓜和土壤样品分别用乙腈和丙酮提取,硅胶柱净化,高效液相色谱仪二极管阵列检测器检测,外标法定量.结果表明,该方法的最小检出量为3.5×10-10g,在黄瓜和土壤中的最低检测浓度分别为0.010和0.005 mg·kg~(-1).乙嘧酚的平均添加回收率为80.5%~103.1%,变异系数为2.10%~3.74%.消解动态试验表明,乙嘧酚的残留量随时间延长而降低,消解动态曲线符合一级动力学方程,在黄瓜和土壤中的半衰期分别为3.5和9.9 d,属于易降解性农药化合物.乙嘧酚在黄瓜中消解速率高于其在土壤中的消解速率,这可能是由于黄瓜生长稀释作用导致的.  相似文献   

20.
研究了4%杀螟丹粒剂在水稻植株、稻米、稻壳、稻田水和土壤中的残留及消解动态.采用石油醚提取,液液分配净化,气相色谱(GC-ECD)测定,结果表明:杀螟丹在稻田土壤中的平均添加回收率为93.25%~106.85%,相对标准偏差为5.99%~8.17%;在水样中的平均添加回收率为95.43%~103.68%,相对标准偏差为2.64%~8.48%;在稻杆中的平均添加回收率为90.81%~100.8%,相对标准偏差为3.00%~6.89%;在稻壳中的平均添加回收率96.77%~101.09%,相对标准偏差2.75%~6.32%;在稻米中的平均添加回收率为92.89%~97.71%,相对标准偏差为2.98%~8.09%.杀螟丹的最低检出量为1.0×10~(-11)g,土样、水样中杀螟丹的最低检出浓度分别为0.001 mg/kg和0.000 25 mg/L,在水稻稻杆、稻米和稻壳中的最低榆出浓度均为0.005 mg/kg.湖南长沙和云南昆明两地残留消解动态试验结果表明:杀螟丹在稻田土壤、水样和植株中的半衰期分别为:6.8~9.9 d,7.4~7.8 d和7.6~8.9 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号