首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 131 毫秒
1.
啶酰菌胺在黄瓜和土壤中残留分析方法研究   总被引:2,自引:0,他引:2  
建立了啶酰菌胺(boscalid)在黄瓜和土壤中残留的分析方法.样品以乙腈提取,弗罗里硅土柱层析净化,气相色谱(ECD)测定.啶酰菌胺的最小检测量为8×10-11 g,最低检测浓度为0.04 mg·kg-1.黄瓜中啶酰菌胺的添加(浓度0.05~5.0 mg·kg-1)回收率为92.16%~98.32%,变异系数分别为4.59%~8.31%;土壤中啶酰菌胺的添加(浓度为0.05~5.0 mg·kg-1)回收率为89.46%~99.23%,变异系数分别为3.48%~6.15%.该方法的准确性和灵敏度均符合农药残留分析要求.  相似文献   

2.
苦参碱在黄瓜和土壤中的检测方法及其残留动态研究   总被引:6,自引:0,他引:6  
为了解苦参碱在黄瓜和土壤中的残留状况及消解动态,建立了苦参碱在黄瓜和土壤中的气相色谱分析方法,并在天津和安徽两地开展了为期两年的苦参碱在黄瓜和土壤中残留状况和消解动态规律田间试验研究。结果表明,采用无水乙醇超声提取黄瓜和土壤中的苦参碱,使用大孔吸附树脂净化,甲醇定容,气相色谱带氮磷检测器(NPD)进行测定,外标法定量,在0.25~1.0mg·kg-1添加水平范围内,苦参碱在黄瓜和土壤中的平均回收率为78.32%~98.06%,变异系数为3.72%~7.44%;黄瓜和土壤中苦参碱的最小检出量均为1.36×10-12g,最低检出浓度为0.004mg·kg-(1黄瓜)、0.008mg·kg-(1土壤)。田间试验结果表明,苦参碱在黄瓜和土壤中的残留消解动态符合方程Ct=C0e-kt;苦参碱在黄瓜和土壤中的降解半衰期分别为5.19~7.24d和6.70~9.18d。在黄瓜中施用0.3%苦参碱乳油,其制剂施药量为0.18~0.27g·m-2,施药3~4次,两次施药间隔期为7d,距收获期为1d时,苦参碱在黄瓜中的残留量为0.1256~1.2071mg·kg-1,土壤中的残留量为0.0450~0.1837mg·kg-1。目前...  相似文献   

3.
为明确苄嘧磺隆和苯噻酰草胺在稻田系统中的使用安全性,于2010、2011年在杭州、长沙和南宁进行田间试验,研究苄嘧磺隆·苯噻酰草胺0.42%颗粒剂在水稻中的消解动态和最终残留.结果表明,在稻田土壤、水、糙米、谷壳和水稻植株中添加的苄嘧磺隆和苯噻酰草胺的平均回收率为70.78%~ 116.06%,相对标准偏差(RSD)为0.91%~10.24%;苄嘧磺隆和苯噻酰草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10-9 g.在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm2,其中苄嘧磺隆有效成分为64.8 g/hm2,苯噻酰草胺有效成分为1 069.2 g/hm2)下施药1次的消解动态试验结果表明:苄嘧磺隆和苯噻酰草胺在稻田水、稻田土壤和水稻植株中的消解动态曲线均符合一级动力学方程,苄嘧磺隆在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为5.35,3.05和3.71 d,苯噻酰草胺在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为3.61,3.29和3.88 d.分别按低剂量(180 kg/hm2,其中苄嘧磺隆有效成分为43.2 g/hm2,苯噻酰草胺有效成分为712.8 g/hm2)和高剂量(270 kg/hm2)施药1次,在正常收获期采集的稻田土壤、稻杆、谷壳和糙米中均未检测出苄嘧磺隆和苯噻酰草胺.  相似文献   

4.
为明确苄嘧磺隆和苯噻酰草胺在稻田系统中的使用安全性,于2010、2011年在杭州、长沙和南宁进行田间试验,研究苄嘧磺隆·苯噻酰草胺0.42%颗粒剂在水稻中的消解动态和最终残留。结果表明,在稻田土壤、水、糙米、谷壳和水稻植株中添加的苄嘧磺隆和苯噻酰草胺的平均回收率为70.78%~116.06%,相对标准偏差(RSD)为0.91%~10.24%;苄嘧磺隆和苯噻酰草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10~(-9) g。在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm~2,其中苄嘧磺隆有效成分为64.8 g/hm~2,苯噻酰草胺有效成分为1 069.2 g/hm~2)下施药1次的消解动态试验结果表明:苄嘧磺隆和苯噻酰草胺在稻田水、稻田土壤和水稻植株中的消解动态曲线均符合一级动力学方程,苄嘧磺隆在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为5.35,3.05和3.71 d,苯噻酰草胺在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为3.61,3.29和3.88 d。分别按低剂量(180 kg/hm~2,其中苄嘧磺隆有效成分为43.2 g/hm~2,苯噻酰草胺有效成分为712.8 g/hm~2)和高剂量(270 kg/hm~2)施药1次,在正常收获期采集的稻田土壤、稻杆、谷壳和糙米中均未检测出苄嘧磺隆和苯噻酰草胺。  相似文献   

5.
氯吡脲在土壤和黄瓜中的残留分析   总被引:7,自引:0,他引:7  
建立了氯吡脲在土壤和黄瓜中残留的HPLC分析方法,氯吡脲的添加回收率大于80%,变异系数小于12%,最小检出浓度为3.75×10-3 mg/kg,检测限为3.0×10-10g.对黄瓜消解动态的研究表明,氯吡脲在黄瓜中消解较快,半衰期为5.50~7.61d;黄瓜收获时(施药后40 d),样品中未检出氯吡脲残留.土壤消解动态研究表明:氯吡脲在土壤样品中的半衰期为6.54~8.39 d;黄瓜收获时(施药后40d),土壤中均未检出氯吡脲残留.  相似文献   

6.
精甲霜灵与百菌清在黄瓜和土壤中的残留降解规律研究   总被引:2,自引:0,他引:2  
陈莉  来晓丹  贾春虹  余苹中  贺敏  赵尔成 《安徽农业科学》2011,39(27):16626-16628,16647
[目的]研究精甲霜灵与百菌清在黄瓜和土壤中的残留状况与残留降解规律,评价精甲霜灵与百菌清在黄瓜上使用的安全性,建立同时测定黄瓜和土壤中精甲霜灵与百菌清残留量的液相色谱分析方法。[方法]黄瓜和土壤中的精甲霜灵与百菌清采用乙腈溶液振荡提取,使用酸性氧化铝固相萃取小柱净化,液相色谱带二极管阵列检测器(DAD)测定,外标法定量;田间试验按照NY/T 788-2004《农药残留试验准则》进行。[结果]在添加量为0.02~2.00 mg/kg时,精甲霜灵在黄瓜和土壤中的添加平均回收率为84.7%~101.0%,变异系数为2.72%~6.46%;当添加量为0.01~1.00 mg/kg时,百菌清在黄瓜和土壤中的添加平均回收率为76.9%~95.8%,变异系数为3.36%~4.90%。精甲霜灵的最小检出量为5×10-10 g,百菌清为2×10-10 g;精甲霜灵的最低检出质量分数为0.02 mg/kg,百菌清为0.01 mg/kg。精甲霜灵和百菌清在黄瓜和土壤中的残留消解动态符合方程Ct=Coe-kt;精甲霜灵在黄瓜中的半衰期为2.8~3.2 d,在土壤中的半衰期为7.8~9.8 d;百菌清在黄瓜中的半衰期为1.3~2.1 d,在土壤中的半衰期为3.7~4.0 d。在黄瓜上施用精甲霜灵.百菌清440 g/L悬浮剂,施药剂量为推荐用量990 g a.i/hm2和推荐用量的1.5倍1 485 g a.i./hm2,施药3~4次,末次施药1 d后黄瓜中的精甲霜灵残留量低于联合国食品法典委员会(CAC)规定的最大残留限量值(MRL)0.5 mg/kg,百菌清残留量低于CAC规定的MRL值5.0mg/kg。[结论]精甲霜灵.百菌清440 g/L悬浮剂按推荐剂量施用,1 d后收获的黄瓜食用安全。  相似文献   

7.
为探明戊菌唑在黄瓜中的安全性,采用气相色谱-电子捕获器法对戊菌唑在江苏南京、北京和吉林长春3个试验点黄瓜和土壤中的残留消解动态和最终残留进行了研究。结果表明,在0.01 mg/kg、0.10 mg/kg和1.00 mg/kg 3个添加水平下,戊菌唑在黄瓜中的添加回收率为82.5%~94.2%,相对标准偏差为4.8%~7.5%;在土壤中平均回收率为81.2%~93.2%,相对标准偏差为6.2%~9.1%;戊菌唑在黄瓜和土壤中的最低检测浓度均为0.01 mg/kg。戊菌唑在3个试验点黄瓜中的半衰期为1.6~1.9 d,在土壤中的半衰期为1.8~2.3 d。戊菌唑按低剂量(57.0 g/hm2,a.i.)或高剂量(85.5 g/hm2,a.i.)施药2次或3次,在最后一次施药1 d、3 d和5 d后采收,黄瓜中戊菌唑的残留量均低于0.080 mg/kg。按试验推荐施药剂量和次数施用戊菌唑,参照CAC、欧盟或日本制订的黄瓜中戊菌唑的最大残留限量标准(0.1 mg/kg),所采收的黄瓜是安全的。  相似文献   

8.
建立了黄瓜和土壤中啶氧菌酯残留量的检测分析方法,对啶氧菌酯在黄瓜和土壤中的消解动态及残留规律进行了研究。啶氧菌酯的最小检出量为3.5×10-11g;在黄瓜和土壤基质中的最低检出浓度均为0.005mg·kg-1。对黄瓜和土壤2种基质,设置了0.005、0.05、0.25 mg·kg--1个添加水平,每个添加水平设置5个重复,啶氧菌酯在黄瓜和土壤中的添加回收率为68.61%-122.4%,变异系数为1.06%-17.2%。田间试验结果表明:啶氧菌酯在天津地区黄瓜和土壤中的残留消解半衰期分别为5.71d和12.9 d,在山东地区黄瓜和土壤中的残留消解半衰期分别为2.70d和10.3 d,在江苏地区黄瓜和土壤中的残留消解半衰期分别为9.76d和14.9 d。距最后一次施药5d时,啶氧菌酯在黄瓜中的最高残留量为0.014mg·kg-1,远低于欧盟规定的黄瓜中啶氧菌酯最大残留限量0.05mg·kg-1。  相似文献   

9.
乙嘧酚在黄瓜和土壤中的消解动态研究   总被引:3,自引:0,他引:3  
利用高效液相色谱仪及田间试验方法,建立了乙嘧酚在黄瓜和土壤中的残留分析方法,研究了乙嘧酚在黄瓜和土壤中的残留消解动态,对影响残留分析方法的主要参数进行了优化.黄瓜和土壤样品分别用乙腈和丙酮提取,硅胶柱净化,高效液相色谱仪二极管阵列检测器检测,外标法定量.结果表明,该方法的最小检出量为3.5×10-10g,在黄瓜和土壤中的最低检测浓度分别为0.010和0.005 mg·kg~(-1).乙嘧酚的平均添加回收率为80.5%~103.1%,变异系数为2.10%~3.74%.消解动态试验表明,乙嘧酚的残留量随时间延长而降低,消解动态曲线符合一级动力学方程,在黄瓜和土壤中的半衰期分别为3.5和9.9 d,属于易降解性农药化合物.乙嘧酚在黄瓜中消解速率高于其在土壤中的消解速率,这可能是由于黄瓜生长稀释作用导致的.  相似文献   

10.
采用田间试验方法,对47%烯酰·唑嘧菌悬浮剂在辣椒及其种植土壤中的残留消解动态进行研究,以评价烯酰吗啉和唑嘧菌胺混配型杀菌剂施用于辣椒时的安全性。通过超高效液相色谱串联质谱仪进行定量分析,研究此类杀菌剂在辣椒和种植土壤中的残留与消解情况。目标物消解过程符合一级动力学方程,其中,烯酰吗啉在辣椒和土壤中的半衰期分别为1.8~4.6 d,6.6~12.8 d,最终残留量分别为0.04~0.58 mg·kg~(-1),0.01~0.98 mg·kg~(-1);唑嘧菌胺在辣椒和土壤中的半衰期分别为7.4~23.3 d、3.6~7.0 d,最终残留量分别为0.06~0.27 mg·kg~(-1)和0.01~0.18 mg·kg~(-1)。结果显示,烯酰吗啉和唑嘧菌胺在辣椒及其种植土壤中的残留量均低于国家标准GB/T 2763-2016规定的最大残留限量,正确规范使用时不会在辣椒及其土壤中造成残留超标和环境污染。  相似文献   

11.
氯氟吡氧乙酸在小麦及土壤中残留的分析方法   总被引:1,自引:0,他引:1  
采用氢氧化钠-甲醇溶液提取,二氯甲烷萃取,定量甲醇、浓H2SO4条件下酯化,气相色谱法测定小麦及土壤中的氯氟吡氧乙酸。氯氟吡氧乙酸质量浓度在0.01~1.0 mg.L-1之间线性关系良好。在添加浓度0.01~0.8 mg.kg-1下,植株、土壤和籽粒中氯氟吡氧乙酸的平均回收率分别为72.3%~86.7%、83.6%~95.8%和77.7%~87.3%,变异系数分别为3.02%~8.59%、2.87%~8.46%和2.75%~7.61%。氯氟吡氧乙酸的最小检测量为1.0×10-11g,在植株、土壤和籽粒中最低检出浓度均为0.01 mg.kg-1。该方法的准确性、精确性和灵敏度均满足农药残留分析的要求。  相似文献   

12.
葛谦  苟春林  姜瑞 《安徽农业科学》2014,(20):6690-6691
[目的]建立黄瓜和土壤中醚菌酯残留检测方法。[方法]用乙腈提取黄瓜和土壤样品,经弗罗里硅柱净化后用气相色谱ECD检测器检测。[结果]在醚菌酯添加水平为0.05、0.20、0.50 mg/kg 3个浓度时,黄瓜中回收率为80.2%~114.0%,变异系数为2.1%~5.8%;土壤中回收率为95.1%~106.5%,变异系数为3.1%~7.3%,醚菌酯的最小检出量为2.5×10-2ng,最低检出浓度为2.5μg/kg。[结论]该方法灵敏度高、检测限低、重现性好,完全能够满足黄瓜和土壤中醚菌酯残留的检测要求。  相似文献   

13.
为明确烯酰吗啉在土壤及番茄中的残留状况,建立了气相色谱测定土壤和番茄中烯酰吗啉残留量的分析方法。样品用乙腈振荡提取,再用乙酸乙酯萃取,经中性氧化铝层析柱净化后,通过火焰离子化检测器检测,外标法定量。结果表明:在0.5~15mg/L范围内,烯酰吗啉的峰面积与其质量浓度间呈良好的线性关系,相关系数为0.9996。在添加水平为0.5~5.0mg/kg范围内,土壤和番茄中烯酰吗啉平均回收率分别为85.4%~92.7%、89.8%-99.3%,相对标准偏差分别为1.61%~6.59%和1.62%~2.32%。经检测,烯酰吗啉在番茄上的残留量未超过韩国最高残留限量标准。  相似文献   

14.
利用气相色谱法-氢火焰离子化检测器(GC/FID)快速测定麝香中麝香酮含量。样品经乙醇-超声波提取、过滤后,直接利用GC/FID测定,外标法定量。实验测定麝香酮回收率大于95%;定量限为0.80μg.mL-1;校准曲线线性范围为0-320μg.mL-1,线性相关系数r为0.9995;三次高、中、低浓度(50、150、300μg.mL-1)测定峰面积RSD%分别为1.08、0.89、0.55。本实验表明,乙醇超声波提取-GC/FID测定麝香中的麝香酮含量是一种简单、快速、准确的方法。  相似文献   

15.
兰州市菜地土壤和蔬菜镉含量及其健康风险分析   总被引:1,自引:1,他引:0  
在兰州市及周区共采集65个土壤样品和46种155个蔬菜样品,用石墨炉-原子吸收分光光度法测定样品中的镉含量,对兰州市蔬菜和菜地土壤镉含量状况进行调查.结果表明:兰州市菜地土壤镉积累明显,其范围为0.11~0.72 mg.kg-1,平均值为0.22 mg.kg-1,变异系数为61.93%;土样之间存在较大的变异性,反映了人为活动已对土壤中镉含量产生了明显的影响.兰州市蔬菜镉含量范围、平均值和变异系数分别为1.2~76.0μg.kg-1、14.01μg.kg-1和30.3%;叶菜类和葱蒜类蔬菜的镉平均含量显著高于茄果类和根茎类.兰州市居民人均从蔬菜中摄入镉的量为19.6μg.d-1,部分蔬菜镉可能给食用者带来一定的潜在健康风险.  相似文献   

16.
采集江苏稻田种植区872份河水和近河淤泥样品,分析稻田常用农药对河水污染现状,建立丙溴磷、三唑磷、丙环唑和咪鲜胺液质联用检测方法。河水样品经饱和氯化钠溶液和二氯甲烷+丙酮混合溶液萃取,淤泥样品经无水硫酸钠和氯化钠及丙酮+正己烷混合溶液提取,C18反相色谱柱分离,三重串联四极杆质谱仪检测。结果表明:建立的液相色谱质谱联用仪检测方法对丙溴磷、三唑磷和丙环唑在河水和淤泥中的检测限均为0.001 5mg.kg-1,定量限均为0.005mg.kg-1。咪鲜胺在河水和淤泥中的检测限均为0.003mg.kg-1,定量限均为0.010mg.kg-1。各农药在0.01~1.0μg.mL-1范围内与响应值线性相关,决定系数均在0.99以上。对丙溴磷、三唑磷和丙环唑在河水和淤泥中分别添加0.005、0.05和0.5mg.kg-1 3个水平,对咪鲜胺在河水和淤泥中分别添加0.01、0.1和1.0mg.kg-1 3个水平,结果表明,平均回收率为80%~110%,相对标准偏差均在20%以内。对江苏稻田种植区河水及淤泥样品进行分析,河水中丙溴磷、三唑磷和咪鲜胺检出率分别为3.7%、1.7%和2.5%,淤泥中三唑磷检出率为1.4%,表明河水污染程度高于淤泥。试验建立的方法简便、快速,且灵敏度、准确度高、精密度好,符合农药残留检测规范要求,适用于高通量农药残留检测。  相似文献   

17.
气相色谱-质谱法测定黄瓜中的啶虫脒农药残留   总被引:1,自引:0,他引:1  
王瑞  林敏霞  吴淳  林其达  顾亚萍 《安徽农业科学》2010,38(31):17538-17539
建立气相色谱-质谱联用仪检测啶虫脒在黄瓜中残留量的方法。采用乙腈提取黄瓜中的啶虫脒农药残留,用氟罗里硅士进行柱净化,采用气相色谱-质谱联用仪在SIM模式下进行检测,用外标法定量。结果表明,该方法空白加标的回收率为86%~105%,在浓度为0.2~10.0mg/L具有良好的线性关系,相关系数为R^2=0.9975,最低检出限达0.08mg/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号