首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
猪CatSperB和CatSperG基因的克隆、表达及生物信息学   总被引:1,自引:1,他引:0  
【目的】揭示猪CatSperB和CatSperG基因的存在、蛋白的结构特征、进化关系及时空表达特性。【方法】利用电子和分子克隆技术鉴定猪CatSperB和CatSperG基因全长cDNA,并利用定性RT-PCR和荧光定量RT-PCR进行CatSperB和CatSperG基因的时空表达研究。【结果】①分别获得了3 508 bp CatSperB和3 715 bp CatSperG电子转录子,分别包含3 330和3 483 bp开放阅读框,并经TA克隆测序验证,其CDS序列与人、牛、马和狗等的CatSperB和CatSperG基因的序列相似性在80%以上;②CatSperB分子质量为125.79 kD,为稳定蛋白;CatSperG分子质量为133.40 kD,为不稳定蛋白;③CatSperB和CatSperG 都包含 7 个通道蛋白保守的跨膜结构域,CatSperG蛋白C端含一个超螺旋结构,而CatSperB蛋白无明显的超螺旋结构信号;猪CatSperB和CatSperG与牛、狗和马的CatSperB和CatSperG蛋白同源关系较近,与人和小鼠的同源关系较远;④RT-PCR分析表明,CatSperB和CatSperG基因主要在睾丸中表达,但CatSperB在其它组织也有表达信号;⑤CatSperB和CatSperG基因mRNA表达水平在猪性发育的重要阶段,精子发生(60日龄)、初情期(90日龄)和性成熟(150日龄)前后都有显著提高(P<0.05)。【结论】获得了猪CatSperB和CatSperG基因的cDNA克隆及其一系列生物信息学参数,揭示了CatSperB和CatSperG蛋白含7个保守的跨膜结构域及不同物种间的进化关系,证实CatSperB和CatSperG基因主要在睾丸表达,且其mRNA表达变化与公猪的性发育相一致。  相似文献   

2.
 【目的】ERK2基因在细胞增殖和分化调控以及启动卵巢排卵的分子信号等过程中发挥重要作用,是影响猪繁殖性状的重要候选基因。本试验对猪ERK2基因序列、基因结构、基因多态性及其表达规律进行初步研究。【方法】以大白猪为材料,采用RT-PCR方法克隆了猪ERK2基因,Real-Time PCR测定该基因在猪各组织器官中的分布,并对该基因的结构和多态性进行分析。【结果】从猪卵巢组织中克隆获得ERK2基因部分cDNA序列,长1 888 bp,包括一个1 080 bp的开放阅读框,编码359个氨基酸与预测的猪ERK2基因、已报道的人和小鼠等的ERK2基因高度相似;猪ERK2基因在各组织中表达广泛,其中脾脏是表达量最高的组织,在脂肪组织、前后腿肌中基本不表达;猪ERK2基因定位于14号染色体,全长在22 kb以上,包含9个外显子和8个内含子;对第2—9外显子及内含子外显子交界处的内含子序列进行序列突变检测,共检测到11个SNPs和1个插入缺失突变,但绝大部分的变异都是在内含子区域,仅有1个SNP发生于3′UTR区域。【结论】猪ERK2基因cDNA为1 888 bp,编码359个氨基酸残基;在猪各组织中广泛分布,以脾脏的表达量最高;该基因由9个外显子和8个内含子组成,基因保守性较高,共检测到11个SNP和1个插入缺失突变均不在编码区中。  相似文献   

3.
【目的】研究雄性奶山羊Prm1基因的表达规律并克隆该基因,为奶山羊精子发生过程的研究提供分子基础。【方法】利用PCR技术从关中奶山羊睾丸组织中扩增出Prm1基因的全CDS序列,对其进行同源性比较和进化比较。同时用PCR、western blotting及免疫组化技术检测Prm1在不同年龄雄性关中奶山羊睾丸中的表达。将克隆出的奶山羊Prm1基因与pIRES-GFP载体连接构建重组真核表达载体,转染GC1细胞和人的脐带基质细胞检测Prm1基因的超表达情况。【结果】Prm1基因在成年奶山羊睾丸组织中的表达量很高,且只定位于精子头部,在其它时期的睾丸组织中基本不表达。同时扩增得到了关中奶山羊Prm1 基因CDS序列,与其它物种比对,发现其与许多物种具有较高的同源性,与牛的同源性高达97.4%,最后在GC1细胞和人的脐带基质细胞中进行了超表达。【结论】得到了关中奶山羊Prm1基因的表达规律及完整的CDS序列。  相似文献   

4.
【目的】探究饲粮中添加不同水平花椒籽对育肥猪脂肪酸组成和肝脏型脂肪酸结合蛋白基因(FABP1)组织表达水平的影响。【方法】试验选择288头3月龄体质量相当且健康的杜×长×大三元育肥猪,随机分为4组,分别用花椒籽代替基础饲粮中0%(对照组)、2.5%(Ⅰ组)、5%(Ⅱ组)和7.5%(Ⅲ组)玉米进行饲喂,试验期100 d,试验结束后采集育肥猪肝脏、背肌和肾周组织测定脂肪酸含量,利用荧光定量qPCR检测FABP1基因在育肥猪各组织中的表达特征。【结果】添加花椒籽显著改善育肥猪背肌和肝脏中SFAs、MUFAs和PUFAs水平,试验I组背肌和肝脏SFAs显著升高(P<0.05),试验Ⅱ组背肌、肝脏和肾周PUFAs显著升高(P<0.05);猪FABP1基因CDS全长383 bp,共编码127个氨基酸,与参考序列相比,其编码区第53位T突变为A;FABP1基因在花椒籽饲喂育肥猪的肝、脾、十二指肠、空肠、回肠、结肠、直肠、盲肠和背肌组织均显著上调表达(P<0.05),在肾脏中显著下调表达(P<0.05),试验Ⅱ组脾脏、空肠、直肠和背肌中FABP1基因的表达量显著高于其他组(P&...  相似文献   

5.
【目的】为了在猪中找到更多新的候选印记基因并分析它们在哺乳动物之间的保守性,以期为猪分子遗传育种提供基础分子生物学信息和分子标记。【方法】以长白与荣昌猪杂交F1 代一月龄个体为研究对象,通过比较生物学的方法,克隆COPG2和MEST全长cDNA,并分析基因的序列特点,然后利用 IMpRH(法国农业科学院的辐射杂种克隆板)分析COPG2和MEST在猪染色体上定位信息。通过RT-PCR产物直接测序方法分析了这些基因在一月龄F1代个体11个不同组织(心、胃、肌肉、肾脏、肺、肝、小肠、膀胱、舌头、脾和脂肪)的印记状况,并进一步利用Real-time PCR方法,分析其在一月龄F1代个体11个不同组织的表达情况。【结果】克隆得到2 817 bp COPG2和2 219 bp MEST序列。其中COPG2 包括2 616 bp 完整CDS(coding sequenc,编码序列)区域,分析表明其编码含871个氨基酸的蛋白质,MEST包括981 bp完整CDS区域,编码326个氨基酸的蛋白质。IMpRH分析结果表明,猪COPG2和MEST都位于猪18号染色体上并且与标记CL365941紧密连锁,LOD值分别为14.32和8.5。印记分析表明COPG2在11个组织中呈双等位表达,MEST在心脏、胃、肌肉、肾、肺、膀胱、舌头和脂肪中表达父方等位基因,但在肝脏、小肠和脾脏中呈双等位表达。荧光定量结果显示COPG2 和MEST总的表达量在一月龄个体各组织间存在着显著性差异(P<0.01),其中COPG2和MEST在肾脏中表达量均高于其它各组织(P<0.01)。【结论】在哺乳动物之间,COPG2序列较为保守但是印记状况却缺乏保守性;MEST序列和印记状况均较为保守,但MEST在猪中印记状况具有组织特异性。此外,染色体定位信息和印记状况证实了在猪的18号染色体上有由COPG2和MEST构成的新的印记域。  相似文献   

6.
【目的】了解牦牛和犏牛睾丸组织中DDX4基因mRNA表达水平和启动子区甲基化状态。【方法】采用real-time PCR技术检测牦牛和犏牛睾丸组织DDX4基因mRNA表达水平,采用克隆测序技术获得牦牛和犏牛DDX4基因启动子区序列,采用亚硫酸氢钠测序法检测牦牛和犏牛睾丸组织中DDX4基因启动子区甲基化状态。【结果】牦牛睾丸组织中DDX4基因mRNA表达水平极显著高于犏牛(P<0.01);牦牛和犏牛DDX4基因启动子区1 370 bp,含有核心启动子区(251 bp)和CpG岛(918 bp)。犏牛睾丸组织中DDX4基因启动子区甲基化水平(86.5%)极显著高于牦牛(67.0%)(P<0.01)。【结论】牦牛睾丸组织DDX4基因表达水平极显著高于犏牛,获得了牦牛和犏牛DDX4基因启动子区序列,且犏牛睾丸组织中DDX4基因启动子区甲基化水平极显著高于牦牛(P<0.01)。  相似文献   

7.
刘文娇  王涵  龚婷 《南方农业学报》2022,53(12):3498-3509
【目的】分析SP1基因在从江香猪不同组织及不同发育阶段睾丸中的表达情况及其对睾丸间质细胞自噬、凋亡的转录调控作用,为探究SP1基因调控间质细胞自噬的分子机制及提高从江香猪雄性繁殖性能提供理论基础。【方法】选取性早熟的从江香猪作为研究对象,PCR扩增得到其SP1基因编码区(CDS)序列,应用相关在线软件对CDS序列进行生物信息学分析,荧光定量PCR检测性成熟期从江香猪不同组织中SP1表达量,利用实时荧光定量PCR和Western blotting检测不同日龄从江香猪睾丸中的SP1基因表达量。【结果】生物信息学分析结果显示,SP1基因CDS序列全长为2361 bp,编码786个氨基酸残基,蛋白二级及三级结构以无规则卷曲和延伸链为主,无跨膜结构域和信号肽剪切位点,且为不稳定蛋白。SP1氨基酸序列有174个磷酸化位点,通过氨基酸同源性分析发现猪SP1与绵羊和牛的亲缘关系最近。对SP1在各组织的表达量进行检测,结果表明SP1基因相对表达量在脾脏中最高;此外,SP1的蛋白水平在180 d的香猪睾丸中有最高表达量,基因水平在30和180 d的香猪睾丸中有较高表达量。进一步构建SP1基因超表达载体,转染至从江香猪睾丸间质细胞,结果显示pEGFP-C1-SP1组的SP1相对表达量显著高于pEGFP-C1组(P<0.05,下同),而自噬通路相关因子基因mTOR、LC3B、Beclin-1和凋亡相关因子基因Caspase-3、Bcl-2的相对表达量在超表达pEGFP-C1-SP1组显著低于pEGFP-C1组,但自噬凋亡信号因子ERK1/2和凋亡基因Bax的相对表达量无显著变化(P>0.05)。推测SP1基因可通过降低LC3B、Beclin-1、Caspase-3的表达来抑制睾丸间质细胞自噬凋亡的发生,或通过降低mTOR及抗凋亡基因Bcl-2的表达来促进凋亡发生。【结论】 SP1基因在从江香猪不同组织及睾丸发育不同阶段均有表达,且通过影响睾丸间质细胞自噬、凋亡相关基因表达,而在从江香猪初情期和性成熟期发挥重要的生理学作用。  相似文献   

8.
【目的】丰富猪TDRP1基因研究的基础数据.【方法】以猪NM_001198925序列为参考,设计特异性引物,通过克隆测序获得‘合作猪’TDRP1基因完整CDS序列,并进行生物信息学分析,同时采用实时荧光定量PCR方法检测TDRP1基因在不同组织中的表达特性.【结果】获得了TDRP1基因完整的CDS序列(GenBank登录号:KU743254),共684bp,其编码186个氨基酸多肽.与参考序列相比,在编码区第33、348位点处发生了同义突变(C→G、C→T).TDRP1基因分子式为C_(897)H_(1421)N_(259)O_(287)S_2,理论等电点(PI)为5.86,不稳定系数为62.66,疏水指数为64.03,平均亲水性为-0.939,属不稳定可溶性酸性蛋白质.二级结构以无规则卷曲和α-螺旋为主,属混合类蛋白质.亚细胞定位结果显示,TDRP1编码的蛋白质在遗传物质复制和转录、翻译过程中发挥功能的可能性分别为26.3%、14.3%,明显高于发挥其它功能的可能性.mRNA表达分析表明,TDRP1基因在垂体和睾丸中高表达,肺、肾、小脑、卵巢中度表达,肝、脾、大脑、胃、小肠中低表达,心脏组织中不表达.【结论】成功克隆了‘合作猪’TDRP1基因的完整CDS区序列,并发现了2个SNP位点;多组织转录表达分析表明TDRP1在垂体和睾丸中表达较高,可为深入研究TDRP1基因的功能提供参考.  相似文献   

9.
【目的】克隆黄牛、牦牛和犏牛Sycp2基因序列,了解牛Sycp2基因序列特征和组织表达特征,分析睾丸组织中Sycp2基因的表达水平。【方法】采用电子克隆和克隆测序技术获得黄牛、牦牛和犏牛Sycp2基因序列,利用生物信息学方法分析其序列特征;采用RT-PCR分析牛Sycp2基因的组织表达特征;采用real-time PCR技术检测黄牛、牦牛和犏牛睾丸组织Sycp2基因的表达水平。【结果】①黄牛、牦牛和犏牛Sycp2基因编码区序列全长均为4 365 bp,命名为b-Sycp2,编码蛋白含有1 454个氨基酸残基,并包含卷曲螺旋结构域等典型结构域;②b-Sycp2基因在睾丸组织中特异表达,黄牛和牦牛睾丸组织中b-Sycp2基因的表达水平显著高于犏牛(P<0.05)。【结论】成功克隆了b-Sycp2基因,b-Sycp2基因为睾丸组织的特异表达基因,且黄牛和牦牛睾丸组织b-Sycp2基因表达水平显著高于犏牛。  相似文献   

10.
【目的】研究绵羊核因子I/B (nuclear factor I/B,NFIB)基因的组织表达规律,并克隆中国美利奴羊(新疆军垦型)NFIB基因的全长编码区(coding sequence,CDS区)序列。【方法】采用半定量RT-PCR的方法分析NFIB基因的组织表达谱和皮肤表达特性,利用RT-PCR扩增绵羊NFIB基因的全长CDS区、克隆测序,并进行序列分析。【结果】①NFIB基因在绵羊多种内脏器官和皮肤组织中都有着不同程度的表达,且在皮肤组织中表达较高;NFIB基因在超细毛品系体表不同部位皮肤组织中的表达水平不存在显著性差异(P>0.05);同时在6个不同品系/品种绵羊体侧部皮肤组织中的表达水平也不存在显著性差异(P>0.05);超细毛品系绵羊皮肤组织NFIB基因的表达水平在不同季节存在显著性差异(P<0.05);②绵羊NFIB基因编码区至少存在3种剪接形式,其开放阅读框(open reading frame,ORF)的长度依次为1 263、1 128 和1 038 bp,分别编码420、375和345个氨基酸。【结论】中国美利奴羊(新疆军垦型)NFIB基因在皮肤组织中的表达量较高,其在超细毛品系羊体侧部皮肤组织中的表达量具有显著的季节性差异;绵羊NFIB基因至少可以编码3种不同的蛋白剪接体(protein isoform)。  相似文献   

11.
【目的】克隆陆川猪的富含半胱氨酸和甘氨酸蛋白3(CSRP3)基因,并对其进行生物信息学和组织表达谱分析,为研究CSRP3基因在陆川猪肌肉生长过程中的作用机制打下基础。【方法】根据NCBI已公布的野猪CSRP3基因序列设计特异性定量引物和克隆引物,运用RT-PCR克隆CSRP3基因并进行生物信息学在线分析,采用实时荧光定量PCR检测CSRP3基因在陆川猪各组织中的表达差异。【结果】陆川猪CSRP3基因编码区(CDS)全长854 bp,编码194个氨基酸残基,与NCBI已公布的野猪CSRP3基因CDS序列相比存在5处同义碱基突变,且陆川猪与野猪氨基酸序列相似性达100.0%;陆川猪CSRP3基因的编码蛋白分子量为20935.82 Da,分子式为C964H1404N262O274S19,理论等电点(pI)为8.89,不稳定系数为39.11,表明其是偏碱性的稳定蛋白;CSRP3蛋白二级结构主要由无规则卷曲构成,三级结构可能有一种模型;陆川猪CSRP3蛋白除有多个磷酸化位点之外,无跨膜结构和信号肽;陆川猪CSRP3基因在心脏中表达量最高,背最长肌次之,在肝脏中的表达量最低。【结论】CSRP3基因在陆川猪心脏中表达量最高,背最长肌次之且明显高于其他组织,说明该基因可能对肌肉生长有一定影响。  相似文献   

12.
【目的】克隆绵羊UCP4基因的编码序列(CDS),分析CDS及其编码蛋白结构特点,并探讨其mRNA的发育性表达规律,以期为该基因的结构和功能研究奠定理论基础。【方法】利用RT-PCR技术从绵羊大脑组织中扩增出该基因的编码区序列,运用生物信息学方法分析UCP4蛋白的理化性质和结构特点。利用实时荧光定量PCR技术,对两个具有显著尾型差异的绵羊品种(广灵大尾羊和小尾寒羊)2、4、6、8、10和12月龄共计96个个体的8种组织(大脑、小脑、下丘脑、垂体、皮下脂肪、肾周脂肪、肠系膜脂肪和尾部脂肪)进行mRNA表达研究。【结果】绵羊UCP4基因CDS区长972 bp,编码323个氨基酸,分子量为35.73 kDa,等电点为9.43。二级结构中α螺旋、β折叠股和环分别占56.04%、7.12%和36.84%。该蛋白为跨膜蛋白,无信号肽,但有2个糖基化位点和15个潜在的磷酸化位点。UCP4 mRNA在脑组织和脂肪组织中均有表达,但高表达于脑组织中。品种、月龄和组织对UCP4 mRNA表达均有显著影响。【结论】获得了绵羊UCP4 基因的CDS全序列,揭示了其mRNA的表达特征及其影响因素,对进一步研究该基因的结构及其与能量代谢的关系具有重要科学意义。  相似文献   

13.
【目的】明确隆林山羊诱导细胞凋亡DFF45样效应因子c基因(CIDEc)的生物学特性及其表达规律,为揭示CIDEc基因对山羊脂肪代谢的调控机制提供理论依据。【方法】提取隆林山羊背最长肌、心脏、肝脏、脾脏、肾脏、腹脂和皮下脂肪及努比亚山羊腹脂和皮下脂肪的总RNA,PCR扩增隆林山羊CIDEc基因编码区(CDS)序列,使用Ex-PASy、TMHMM Server v.2.0、ProtScale、NPS@SOPMA和SWISS-MODEL等在线软件进行生物信息学分析,并利用实时荧光定量PCR检测CIDEc基因在隆林山羊和努比亚山羊不同组织器官中的表达情况。【结果】隆林山羊CIDEc基因CDS序列全长为741 bp,共编码244个氨基酸残基,其编码蛋白分子量26.09 kD,不稳定系数48.44,脂肪指数100.7,理论等电点(pI)5.28,属于酸性蛋白,不存在跨膜结构,亲水性较强。隆林山羊CIDEc基因CDS序列与NCBI已公布的山羊CIDEc基因(XM_018038446.1)CDS序列相对比仅有1处碱基发生突变,即第560位点G突变为T,属于同义突变。隆林山羊与绵羊的CIDEc基因CDS序列相似性最高(99.0%),与小鼠的相似性较低(79.6%);基于CIDEc基因CDS序列相似性构建的系统发育进化树也显示隆林山羊与绵羊的亲缘关系最近,与小鼠的亲缘关系较远。在隆林山羊CIDEc蛋白的二级结构中:α-螺旋占32.38%,β-转角占12.70%,延伸链占13.11%,无规则卷曲占41.80%。CIDEc基因在隆林山羊7个组织器官中均有表达,且在腹脂和皮下脂肪中高表达,极显著高于在其他器官组织的相对表达量(P<0.01);CIDEc基因在努比亚山羊脂肪组织(皮下脂肪和腹脂)中的相对表达量显著高于在隆林山羊脂肪组织中的相对表达量(P<0.05)。【结论】CIDEc基因在隆林山羊各器官组织中均有表达,以在脂肪组织中的表达水平较高,且其在努比亚山羊脂肪组织(皮下脂肪和腹脂)中的表达水平显著高于在隆林山羊中的表达水平。可见,CIDEc蛋白是脂肪代谢的重要调节剂,与动物体内脂质存储密切相关。  相似文献   

14.
【目的】明确水牛Tle6基因表达组织特异性及其在卵母细胞和早期胚胎中的表达模式,并通过构建原核表达载体诱导表达融合蛋白及免疫小鼠制备TLE6多克隆抗体,为进一步揭示Tle6基因在水牛生殖发育中的作用机制提供理论依据。【方法】采用RT-PCR扩增水牛Tle6基因编码区(CDS)序列,经生物信息学分析后,分别以半定量PCR和实时荧光定量PCR检测分析水牛Tle6基因表达组织特异性及其在卵母细胞和早期胚胎中的表达模式。构建重组原核表达载体,以IPTG诱导表达的融合蛋白免疫小鼠制备TLE6多克隆抗体,再利用TLE6多克隆抗体检验TLE6蛋白在水牛不同组织及卵母细胞和早期胚胎中的表达情况。【结果】水牛Tle6基因CDS序列全长1731 bp,编码576个氨基酸残基,其编码蛋白分子量为64.09 kD,理论等电点(pI)为5.69,属于亲水性蛋白。Tle6基因仅在水牛的卵母细胞中特异性表达。重组原核表达载体p ET-32a-Tle6转化BL21(DE3)感受态细胞,经IPTG诱导6 h,融合蛋白TLE6的表达量最高,且以可溶性蛋白和包涵体2种形式进行表达;以纯化的融合蛋白TLE6免疫小鼠成功制备获得TLE6多克隆抗体,其抗体效价为1∶64000,能与融合蛋白TLE6及水牛卵母细胞发生特异性反应,即具有很强的特异性。【结论】Tle6基因仅在水牛卵母细胞中特异性表达,而在其他组织中未见表达。不同于其他MEGs的表达模式,Tle6基因在水牛卵母细胞及胚胎早期发育过程中呈特异性持续表达,可能在水牛卵母细胞成熟及附植前的胚胎发育过程中发挥重要作用。  相似文献   

15.
【目的】对猪脂肪组织RNA的Solexa测序结果进行分析整理,发现猪新转录本CHPT1基因。研究CHPT1在猪不同组织及脂肪细胞不同分化阶段的表达谱,以便为后续的基因功能研究奠定基础。【方法】取猪的背部脂肪组织提取RNA,建立cDNA文库,进行Solexa测序,对测序结果进行生物信息学分析。利用反转录聚合酶链式反应(RT-PCR)及实时荧光定量PCR,克隆猪CHPT1基因的CDs区部分序列,并对其在不同组织及脂肪细胞不同分化阶段的表达谱进行分析。【结果】由Solexa测序分析结果发现,猪存在新转录本基因CHPT1,其对应的Tag表达量在180日龄大白猪与240日龄荣昌猪的脂肪组织中无明显差异,在3日龄与240日龄荣昌猪脂肪组织中表达差异达到20倍以上。克隆获得了其CDs区193 bp的cDNA序列。实时荧光定量PCR检测结果表明,CHPT1基因在3日龄和180日龄大白猪的各个组织中均有表达,其中在肝脏和肾脏中表达量较高,且表达量有差异。3日龄与180日龄大白猪相比,肾脏和脂肪组织中CHPT1的表达量均有显著差异。在猪前体脂肪细胞的时序表达结果中,CHPT1表达量呈先增加后降低的趋势,其中第2天表达量明显升高,于第6天达到最大值,之后降低。【结论】猪存在CHPT1基因,其在猪的各个组织中都有表达,对猪的脂肪沉积可能发挥着重要作用。  相似文献   

16.
【目的】克隆木薯ERF转录因子基因MeERF5,并分析其在多种逆境胁迫下的表达模式,为深入研究MeERF5基因在木薯逆境胁迫应答中的调控机制提供参考。【方法】PCR扩增木薯品种华南8号的MeERF5基因编码区(CDS)全长序列,对其进行生物信息学分析,并利用根癌农杆菌介导法进行蛋白亚细胞定位。通过实时荧光定量PCR(qRT-PCR)检测MeERF5基因在木薯不同组织及多种逆境胁迫处理下的相对表达量。【结果】克隆获得MeERF5基因CDS序列为948 bp,与Phytozome数据库中的参考序列(登录号:Manes.01G085200.1)的核苷酸序列相似性为100.00%,其编码315个氨基酸残基,蛋白分子量为77.84 kD,理论等电点(pI)为5.08,属于酸性蛋白,其二级结构中α-螺旋占16.51%,β-转角占3.81%,无规则卷曲占62.22%,延伸链占17.46%,亚细胞定位于细胞质。通过多序列比对及系统进化分析发现,MeERF5蛋白含有1个AP2/ERF保守结构域,与同属大戟科的橡胶树ERF蛋白氨基酸序列相似性最高(76.8%),亲缘关系最近。MeERF5基因在木薯不同组织中均有表达,其中,在茎中的相对表达量最高,在腋芽中的相对表达量最低。MeERF5基因能快速响应低温胁迫、干旱胁迫、氧化胁迫、盐胁迫及ABA处理,均出现诱导表达上调的现象,其中,在氧化胁迫下,MeERF5基因的相对表达量持续上升;在干旱胁迫、盐胁迫及ABA处理下,MeERF5基因的表达量先上升后降低;在低温胁迫下,MeERF5基因在处理5 h时的相对表达量达到最大值,之后有所下降,但在处理48 h时再度上升。【结论】克隆获得的MeERF5基因属于AP2/ERF类转录因子,参与木薯多种非生物胁迫应答过程。  相似文献   

17.
【目的】前蛋白转化酶枯草溶菌素9(proprotein convertase subtilisin/Kexin type 9,PCSK9)基因是人类高胆固醇血症(autosomal dominant hypercholesterolemia,ADH)的主效基因之一,其获得型突变与人类家族性高胆固醇血症有直接的关系。PCSK9-D374Y突变体对低密度脂蛋白受体(low density lipoprotein receptor,LDLR)的降解能力比野生型蛋白强十倍,增加了患高胆固醇血症的风险,从而加速动脉粥样硬化的进程。猪心血管系统和血脂代谢方面与人类非常相近,成为研究动脉粥样硬化疾病的理想模型之一。然而自然发病的猪缺乏,且诱导病征发生缓慢。因此拟利用体细胞克隆技术制备PCSK9获得型突变体转基因猪,以模拟动脉血管的病理学变化,加速发病进程,为动脉粥样硬化的研究提供理想的动物模型。【方法】研究使用人PCSK9基因D374Y突变体载体,用电转染的方法将其整合到五指山小型猪近交系胎儿成纤维细胞中,并通过体细胞核移植技术获得了人PCSK9基因D374Y突变体转基因猪个体。通过Southern-blot、实时荧光定量PCR、Western-blot等方法,分别从DNA、RNA、蛋白的水平检测了人PCSK9基因在转基因猪肝脏中的整合表达情况。同时,通过组织化学染色与H.E.染色的方法对转基因猪进行了组织学检测。【结果】转基因阳性细胞集落在药筛的第3天开始出现,至第7天形成较大的单克隆点,且PCR检测结果显示扩增产物可以拼接为完整片段,说明外源片段在基因组中具有完整性;将筛选得到的阳性细胞作为体细胞克隆的供体细胞,通过体细胞核移植技术获得了转基因猪个体。PCR及Southern-blot检测结果显示,D374Y-PCSK9基因可以完整的插入猪的基因组中,且有串联重复现象;RT-PCR和QPCR检测结果表明,人PCSK9基因能在猪肝脏内正常转录且不影响猪内源性PCSK9基因的转录,且在其它内脏器官,如心、脾、肺、肾也能检测人PCSK9基因的表达,而猪内源性PCSK9基因在这些组织中表达量很低;Western-blot检测结果与RNA水平的检测类似。这些结果说明人D374Y-PCSK9基因成功整合到猪基因猪中,且能够正常转录与翻译。通过组织化学染色发现,与野生型猪肝脏相比,克隆猪肝脏中LDLR蛋白水平极显著低于野生型。另外,对克隆猪进行H.E.染色后发现其肝脏组织有明显的病理学变化,该结果说明,LDLR水平的急剧下降有可能是导致肝脏病变的原因。【结论】成功获得了人PCSK9基因D374Y突变体的克隆猪;与野生型猪肝脏相比,克隆猪肝脏中LDLR水平显著降低,并且克隆猪肝脏发生了明显病变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号