首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
【目的】对除虫脲在荔枝上的安全性进行评价,为该药在荔枝上的合理使用提供科学依据。【方法】通过建立除虫脲在荔枝全果和果肉的前处理方法和液相色谱—二级管阵列紫外检测器的仪器方法,对除虫脲进行定量分析;通过两年(2013~2014年)两地(广东、广西)的残留试验,研究除虫脲在荔枝上的残留及消解动态。【结果】除虫脲在荔枝果肉和全果上平均回收率分别为84.1%~84.8%和82.7%~84.9%,相对标准偏差分别为2.9%~4.3%和3.2%~4.2%,最小检出量为5×10-10 g,在荔枝全果和果肉上的最低检测浓度均为0.01 mg/kg。除虫脲在荔枝上的消解半衰期为3.5~4.9 d;以125.0~187.5 mg/kg剂量、施用3~4次,采收间隔期为7和10 d时,荔枝果肉上的残留量均小于0.01 mg/kg,全果上的残留量分别为0.05~0.23和0.01~0.05 mg/kg。【结论】除虫脲在荔枝上防治荔枝蒂蛀虫时施用剂量以125.0 mg/kg为宜,施药次数3次,安全间隔期10 d。  相似文献   

2.
【目的】研究代森锌及其代谢物乙撑硫脲(ETU)在芒果中的残留动态,评估其通过膳食途径摄入的风险。【方法】基于代森锌酸解会产生二硫化碳(CS2)这一原理,分别用气相色谱(GC)、液相色谱 串联质谱(LC-MS/MS)及优化的样品前处理技术,建立芒果中代森锌(以CS2表示,下同)及其代谢物ETU的检测方法。参照有关试验标准,于2017年在海南海口、广西南宁、云南玉溪、福建宁德、广东肇庆、广东惠州6个芒果主要种植区分别进行代森锌及ETU的消解动态和最终残留试验,并对其在芒果中的膳食风险进行评估。【结果】代森锌添加水平为1.8 mg/kg时,其在芒果全果、果肉空白样品中的转化率分别为94%和97%;代森锌添加水平为0.1~2.0 mg/kg时,其在芒果全果、果肉中的平均回收率分别为92.2%~102.3%和91.2%~100.0%,相对标准偏差分别为3.2%~6.3%和0.6%~3.9%,定量限为0.1 mg/kg。ETU添加水平为0.01~0.5 mg/kg时,其在芒果全果、果肉中的平均回收率分别为93.4%~97.9%和92.3%~99.2%,相对标准偏差分别为5.9%~8.3%和2.1%~5.7%,定量限为0.01 mg/kg。云南玉溪和广东肇庆的消解动态试验结果显示,代森锌在芒果上的半衰期分别为6.30和2.04 d,代森锌和ETU在芒果果肉中均未检出,其残留值均小于定量限;芒果全果中ETU的残留量小于CS2的残留量,并且残留中值和残留最大值均以ETU的较小。末次施药10 d后,芒果全果中代森锌和ETU的残留量分别为<0.10~1.51和<0.010~0.024 mg/kg;末次施药14 d后,芒果全果中两者的残留量分别为<0.10~1.55和<0.010~0.012 mg/kg;末次施药21 d后,芒果全果中两者的残留量分别为<0.10~0.29和<0.010 mg/kg。膳食风险评估结果表明,代森锌在芒果全果中的国家估算每日摄入量为1.56~3.14 mg,风险概率为82.3%~166.0%。【结论】代森锌(以CS2表示)在芒果中的最大残留限量值为5 mg/kg。  相似文献   

3.
杀扑磷在柑橘和土壤中的残留分析方法研究   总被引:2,自引:0,他引:2  
建立了用气相色谱法(GC)检测柑橘和土壤中杀扑磷残留量的分析方法。分别以二氯甲烷、乙酸乙酯为提取溶剂,提取液经浓缩和净化后,用GC-FPD检测器测定样品中杀扑磷的残留量。试验结果表明,杀扑磷在柑橘果皮、全果和土壤中的最低检测浓度(LOQ)为0.1 mg/kg;果肉中LOQ为0.01 mg/kg。空白样品中添加浓度在0.01~5.0 mg/kg时,果皮中的回收率为80.6%~83.5%;果肉样品中的回收率为94.7%~103.5%;土壤样品中回收率在103.8%~110.5%。  相似文献   

4.
建立嘧菌酯在荔枝上的残留分析方法,并于2011-2012年在广州和南宁进行250 g · L -1嘧菌酯悬浮剂在荔枝上的田间试验,研究其在荔枝上的消解动态和最终残留。采用甲醇提取,弗罗里硅土和中性氧化铝柱层析净化,气相色谱法(ECD)检测嘧菌酯残留量。在添加水平为0.01、0.1和1 mg · kg -1时,荔枝果肉、全果和果皮中平均添加回收率分别为83.0%~85.1%、83.3%~84.9%和80.6%~84.5%;相对标准偏差分别为2.24%~3.88%、2.77%~3.84%和2.90%~3.68%;检出限(LOD)为0.005 mg · kg -1;定量限(LOQ)为0.01mg·kg -1。田间试验结果表明,嘧菌酯在广州和南宁荔枝中的半衰期分别为2.8~5.7d和3.5~7.2d,消解迅速。250 g · L -1嘧菌酯悬浮剂,200 mg · kg -1施用3~4次,于末次施药后7 d ,荔枝全果上残留量为0.01~0.16 mg · kg -1,果肉中残留量均小于0.01 mg · kg -1,果皮中残留量为0.02~0.73 mg · kg -1;于末次施药后14 d ,全果残留量为<0.01~0.12 mg · kg -1,果肉中的残留量均小于0.01 mg · kg -1,果皮中的残留量为0.01~0.54 mg · kg -1,全果中的最终残留量低于我国规定的M RL值0.5(mg · kg -1)。  相似文献   

5.
为建立苯醚甲环唑在芒果全果和果肉中的残留分析方法,分析测定了其在云南、海南两地芒果中的残留动态。采用UPLC-MS/MS检测,建立苯醚甲环唑在芒果全果和果肉中的残留分析方法,测定苯醚甲环唑在云南、海南两地芒果中的残留动态及最终残留。选择乙腈作为提取剂,优化去簇电压为125.9 V,碰撞能量为32.98 V。在0.010~0.100 mg/kg添加范围内,苯醚甲环唑在芒果全果和果肉中的平均回收率为79%~95%,变异系数为4.4%~8.6%,方法检出限为0.001 mg/kg,定量限为0.005 mg/kg。苯醚甲环唑在云南和海南两地芒果中的半衰期分别为13.2 d、10.6 d,施药后21 d、28 d、35 d收获的芒果中苯醚甲环唑残留量均低于0.070 mg/kg,低于国家标准限定的残留值。该方法准确度高,灵敏度高,线性良好,可以用于芒果上苯醚甲环唑的残留检测。  相似文献   

6.
采用气相色谱(GC-NPD)分析测定三唑磷在广西、广东两试验点荔枝及荔枝园土壤中的残留及消解动态.2003、2004年两年试验表明,20 %三唑磷EC 500倍喷施1次,荔枝果肉、果皮及全果中的原始沉积量分别为0.0395~0.0718 mg/ kg、4.0502~4.7655 mg/ kg及1.2578~1.9041 mg/ kg,半衰期平均分别为6.8、8.2及9.5 d;在荔枝园土壤中的原始沉积量为0.1358~0.1824 mg/ kg,半衰期为7.4 d.20 %三唑磷500倍对荔枝施药3次,距末次施药后14 d采样测定全果中的残留量为0.7246~0.8254 mg/ kg,低于英国制订的三唑磷在香蕉中的MRL值1 mg/ kg.  相似文献   

7.
噻嗪酮在柑橘和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
[目的]监测噻嗪酮在柑橘和土壤中的残留量。[方法]采用气相色谱法测定噻嗪酮在柑橘和土壤中的残留。[结果]噻嗪酮在柑橘全果中的平均回收率为96.17%~97.38%,变异系数为6.10%~9.07%;在果肉中的平均回收率为95.24%~105.46%,变异系数为3.30%~6.01%;在果皮中的平均回收率为88.76%~93.64%,变异系数为5.12%~6.27%;在土壤中的平均回收率为97.79%~104.3%,变异系数为2.45%~9.21%。噻嗪酮在柑橘和土壤中的消解动态以及最终残留结果表明,在湖南长沙、浙江杭州和贵州贵阳3地柑橘中的消解半衰期分别为7.65、7.64、8.40 d,在土壤中的消解半衰期分别为13.75、9.97、10.18 d。[结论]在柑橘上使用25%噻嗪酮悬浮剂对水剂,按照推荐使用剂量为166.7~250.0 mg/L,施药2~3次的情况下,噻嗪酮在柑橘上的安全期可定为14 d。  相似文献   

8.
噻嗪酮在柑橘和土壤中的残留及消解动态(英文)   总被引:1,自引:0,他引:1  
[目的]监测噻嗪酮在柑橘和土壤中的残留量。[方法]采用气相色谱法测定噻嗪酮在柑橘和土壤中的残留。[结果]噻嗪酮在柑橘全果中的平均回收率为96.17%~97.38%,变异系数为6.10%~9.07%;在果肉中的平均回收率为95.24%~105.46%,变异系数为3.30%~6.01%;在果皮中的平均回收率为88.76%~93.64%,变异系数为5.12%~6.27%;在土壤中的平均回收率为97.79%~104.3%,变异系数为2.45%~9.21%。噻嗪酮在柑橘和土壤中的消解动态以及最终残留结果表明,在湖南长沙、浙江杭州和贵州贵阳3地柑橘中的消解半衰期分别为7.65、7.64、8.40d,土壤中的消解半衰期分别为13.75、9.97、10.18d。[结论]在柑橘上使用25%的噻嗪酮悬浮剂兑水剂,按照推荐使用剂量为166.7~250.0mg/L,施药2~3次的情况下,噻嗪酮在柑橘上的安全期可定为14d。  相似文献   

9.
为明确常用杀虫剂在香蕉果实中的残留情况,测定344份香蕉样品中16种杀虫剂,分析其在全果和果肉中的残留水平,评估其对我国成人和儿童(1~6岁)的膳食风险,并给出最大残留限量制定建议。结果表明,香蕉全果和果肉中杀虫剂的检出率分别为41.86%和21.80%,分别检出11种和5种杀虫剂。吡虫啉在全果和果肉中检出率均最高,分别是26.45%和19.48%。根据我国现有最大残留限量标准,全果中吡虫啉超限量40次,噻虫嗪超限量4次;果肉中吡虫啉超限量28次。在我国香蕉出口贸易中,需要关注吡虫啉、氯氰菊酯和氯氟氰菊酯的残留。除了啶虫脒、哒螨灵和联苯菊酯,其他农药在果肉中的残留水平均低于全果。毒死蜱和拟除虫菊酯类农药主要残留在香蕉果皮中,内吸性较强的新烟碱类农药会通过果皮进入果肉。20.88%的吡虫啉阳性样品和55.56%的啶虫脒阳性样品中果肉的残留量高于全果,这些样品果肉中的残留量是全果残留量的1.03~6.76倍。单一农药的慢性和急性膳食风险以及新烟碱类农药的累积性风险均小于100%,说明膳食风险可接受。建议制定香蕉上氯氟氰菊酯和氯氰菊酯的最大残留限量,分别设为0.5 mg/kg和1.0 mg/...  相似文献   

10.
为探讨25%异丙威·毒死蜱乳油中毒死蜱在水稻及稻田中的残留消解动态,采用气相色谱-氮磷检测器(GC-NPD)法对水稻及稻田中的毒死蜱残留量进行测定,旨在为该药在水稻上的合理使用提供科学依据。结果表明:毒死蜱在稻田水、土壤和植株中的残留消解动态规律均符合一级动力学方程,消解半衰期分别为1.45~3.48 d、3.16~6.36 d和2.05~2.98 d。毒死蜱在稻田土壤、糙米、谷壳和植株中的最终残留量随施药剂量、次数的增加而增加,随采样时间延长而降低。按推荐剂量1 800 g/hm~2和1.5倍推荐剂量2 700 g/hm~2各施25%异丙威·毒死蜱乳油3~4次,距末次施药33 d,土壤中毒死蜱的最大残留量分别为0.044 7 mg/kg和0.081 2 mg/kg,植株中毒死蜱的最大残留量分别为0.047 9 mg/kg和0.063 2 mg/kg,收获的糙米中毒死蜱的最大残留量分别为0.045 4 mg/kg和0.076 5 mg/kg,谷壳中毒死蜱的最大残留量分别为0.084 3 mg/kg和0.093 6 mg/kg,均低于我国规定的毒死蜱在稻谷中的最大残留限量(0.5 mg/kg),此时收获的稻谷食用安全。  相似文献   

11.
为建立大白菜和土壤中虫螨腈残留的气相色谱测定方法,采用乙腈提取、弗罗里硅土柱固相萃取净化、气相色谱-电子捕获检测器(GC-ECD)测定等方法,研究了虫螨腈在大白菜和土壤中的残留消解动态及最终残留量。结果表明:在0.01、0.1和1.0 mg/kg 3个添加水平下,虫螨腈的平均回收率为86.6%~108.0%,相对标准偏差(RSD)为0.4%~3.2%,最小检出量为1.0×10-12 g,最低检测浓度为0.01 mg/kg。采用20%虫螨腈悬浮剂按450 g/667m2的剂量施药,虫螨腈在大白菜中的半衰期为6.0 d,在土壤中的半衰期为7.03 d,药后7 d大白菜中的最终残留量≤1.572 mg/kg,低于我国的最大残留限量值2.0 mg/kg。建议在大白菜上使用20%虫螨腈悬浮剂时,施药制剂量为20~30 g/667m2(折合有效剂量60~90 g/hm2),施药2~3次,安全间隔期为7 d。  相似文献   

12.
建立了甲氰菊酯、高效氯氟氰菊酯、高效氯氰菊酯和溴氰菊酯4种拟除虫菊酯类农药在苎麻和土壤中的多残留分析方法,并通过田间试验研究了这4种农药在苎麻和土壤中的残留消解动态和最终残留量。样品采用乙腈提取,PSA、GCB分散固相萃取净化,经气相色谱仪-电子捕获检测器(GC-μECD)测定,外标法定量。在0.05、0.5和5 mg/kg添加水平范围内,4种农药在苎麻中平均回收率为86.5%~108.3%,相对标准偏差≤5.4%,最低检测浓度为0.05 mg/kg;在0.002、0.02和0.2 mg/kg添加水平范围内,4种农药在土壤中平均回收率为89.0%~106.7%,相对标准偏差≤5.9%,最低检测浓度为0.002 mg/kg。消解动态试验表明:4种农药在苎麻和土壤中的消解行为符合一级降解动力学方程,苎麻中半衰期在10.6~15.1 d之间,土壤中在11.0~23.2 d之间。最终残留结果表明,在15~112.5 g/hm~2施药水平下,施药1~2次,施药间隔期5 d,收获期距末次施药间隔5、10、15、20 d时,4种农药在苎麻中的残留量在0.281~4.628 mg/kg之间,土壤中残留量在0.002~0.196 mg/kg之间。  相似文献   

13.
[目的]对嘧菌酯在花生植株、花生、花生壳及土壤中的最终残留及其消解动态进行分析,评价嘧菌酯在花生生产上的残留安全性.[方法]对不同施药次数、施药剂量及采收间隔期与花生植株、花生、花生壳及土壤中嘧菌酯最终残留量间的相关性进行分析,同时对嘧菌酯进行了膳食摄入风险评估.[结果]嘧菌酯在花生植株和土壤中的消解半衰期分别为7.24~12.07 d和5.57~13.48 d.嘧菌酯在花生植株、花生、花生壳和土壤中的最终残留量分别低于1.135、0.154、0.922和0.957 mg/kg,嘧菌酯残留量排序为花生<花生壳<土壤<花生植株.根据最终残留量试验结果,嘧菌酯在花生中的残留中值为0.05 mg/kg,普通人群嘧菌酯的国家估算每日摄入量为0.418785 mg/kg,占日允许摄入量的3.32%左右.采收间隔期为21和28 d时,在不同施药次数、施药剂量和采收间隔期条件下,嘧菌酯在花生植株、花生、花生壳和土壤中的残留量差异均不显著(P>0.05).[结论]按常规方式施用嘧菌酯通常不会对一般人群健康产生不可接受的风险,但采收间隔期为14 d时,施药剂量和施药次数对最终残留量有一定影响.  相似文献   

14.
【目的】分析噻虫嗪及其代谢物噻虫胺在苦瓜上的残留动态,初步评估其膳食摄入风险。【方法】于2018年在黑龙江省哈尔滨市、河北省定州市、河南省新乡市、湖南省张家界市、浙江省绍兴市、广东省东莞市6地进行噻虫嗪及其代谢物噻虫胺的田间残留试验,并基于高效液相色谱-串联质谱仪(LC-MS/MS)及优化的样品前处理技术,建立苦瓜中噻虫嗪及其代谢物噻虫胺的检测方法。【结果】在0.01~0.5 mg/kg的添加水平下,噻虫嗪和噻虫胺在苦瓜空白基质中的平均回收率分别为87.5%~89.9%和73.9%~89.7%,相对标准偏差分别为5.3%~8.2%和2.5%~5.0%,定量限为0.01 mg/kg。黑龙江和广东两地噻虫嗪在苦瓜中的消解半衰期(t_(1/2))为3.55~5.33 d。最终残留结果显示,噻虫嗪和噻虫胺施药5 d后在苦瓜中的残留量分别为≤0.12 mg/kg和≤0.06 mg/kg。膳食风险评估结果表明,噻虫嗪和噻虫胺在苦瓜中的风险商分别为0.14和0.075,均小于1,不会对一般人群健康产生不可接受的风险。【结论】推荐噻虫嗪、噻虫胺在苦瓜上的最大残留限量值分别为0.2和0.1 mg/kg。  相似文献   

15.
二氯吡啶酸在油菜及土壤中的残留动态研究   总被引:1,自引:0,他引:1  
采用高效液相色谱仪测定除草剂二氯吡啶酸在油菜及土壤中的残留消解动态和最终残留量。结果表明:在油菜和土壤上喷施质量分数75%的二氯吡啶酸可溶性粒剂(有效成分338 g/hm2),测出油菜和土壤中的原始沉积量分别为5.63~6.75 mg/kg和0.47~0.48 mg/kg,半衰期为8.49~10.11 d和3.76~4.74 d。对油菜施药1次,施药后45 d测得油菜上残留量为0.15~0.17 mg/kg。  相似文献   

16.
丙溴磷在柑桔和土壤中的残留研究   总被引:1,自引:1,他引:0       下载免费PDF全文
研究丙溴磷在柑桔及土壤中的消解规律及环境评价,采用田间小区试验研究了50 %丙溴磷?炔螨特乳油在柑桔和土壤中的残留消解趋势。样品采用甲醇提取,石油醚液液分配萃取,弗罗里硅土柱层析净化,GC-ECD检测分析。2010-2011年广东、广西和福建三地的田间试验结果表明:丙溴磷在柑桔和土壤中半衰期分别为4.3~7.2天、5.5~8.1天。施药浓度333 mg/kg,2次施药,药后21 d,柑桔全果中丙溴磷最终残留量<0.01-0.04 mg/kg,柑桔果肉中丙溴磷的最终残留量均小于0.01 mg/kg,均低于我国规定的丙溴磷在柑桔上的最大残留限量值0.2 mg/kg,果皮中的残留量为0.03~0.30 mg/kg,可知,施用后的丙溴磷大部分残留于柑桔果皮中。按照推荐施药剂量为333 mg/kg处理,安全间隔期为21 d,施药次数不超过2次,食用柑桔果肉是安全的,柑桔果皮需经过加工处理不能直接食用。  相似文献   

17.
【目的】评价禾草丹和异丙隆在直播水稻田施用后的生态环境和糙米的安全性。【方法】进行2年3地田间试验,采用高效液相色谱-串联质谱法(HPLC-MS/MS)测定稻田土壤中禾草丹和异丙隆的消解动态及其在糙米和土壤中的最终残留。【结果】在0.01~0.5mg/kg添加水平下,禾草丹和异丙隆在土壤和糙米中的平均回收率为80.4%~108.8%,变异系数为0.6%~12.6%。田间试验结果表明:禾草丹和异丙隆在稻田土壤中施药2h后的原始沉积量分别为0.141~1.134mg/kg和0.066~0.543mg/kg,半衰期分别为1.1~4.2d和0.4~4.4d。收获期稻田土壤和糙米中两者的最终残留量均未检出。【结论】禾草丹和异丙隆均属于易降解农药,50%禾草丹·异丙隆WP按推荐剂量(900g a.i./hm2,即1 800g/hm2)施用于直播水稻田中,施药1次,收获的糙米安全。  相似文献   

18.
采用田间试验方法,探讨蛇床子素在黄瓜和土壤中的消解动态和最终残留。样品经甲醇和丙酮提取,石油醚液-液分配,固相萃取小柱净化后,进行高效液相色谱分析。仪器最小检出量(LOD)为0.2 ng,在黄瓜和土壤中的最低检出质量分数(LOQ)均为0.02 mg/kg。蛇床子素在黄瓜中的平均回收率为88.80%~93.61%,变异系数为1.94%~4.92%;在土壤中的平均回收率为90.74%~94.55%,变异系数为3.20%~6.45%。田间试验结果显示,蛇床子素消解较快,在南京和山东两地黄瓜中降解半衰期分别为0.76 d和0.87 d,土壤中降解半衰期分别为1.12 d和1.15 d。在黄瓜上使用1%蛇床子素水乳剂,按照推荐剂量的1.5倍4 500 g/hm2和推荐剂量3 000 g/hm2喷雾5~6次,距最后一次施药1 d,黄瓜中的残留量为0.11~0.43 mg/kg,土壤中的残留量为0.31~0.77 mg/kg,均小于1.00 mg/kg。以上数据表明,蛇床子素在黄瓜和土壤中属低残留、易降解农药。  相似文献   

19.
嘧霉胺农药在草莓中的残留及消解动态   总被引:1,自引:0,他引:1  
为嘧霉胺农药在草莓上的安全使用提供参考,以红颜草莓为试验材料,采用气相色谱质谱联用仪(GC-MS/MS)检测草莓1次喷施40%嘧霉胺600倍液1~15d后的残留量及残留消解动态。结果表明:红颜草莓在喷施嘧霉胺第1天的残留量最高,达4.816mg/kg,几乎无消解;第3天为3.828mg/kg,消解率为20.5%;第7天为1.116mg/kg,消解率为76.8%,第15天仅0.521mg/kg,消解率达89.2%。嘧霉胺的降解过程符合一级动力学方程C=5.269 2e-0.166t,相关系数r2=0.940 2,半衰期为4.17d。在嘧霉胺添加量为0.01~0.10 mg/kg时,草莓中嘧霉胺的添加回收率为85.2%~105.7%,相对标准偏差为3.95%~4.84%。根据我国食品农药最大残留限量标准(GB 2763—2014),推荐40%嘧霉胺悬浮剂在草莓上使用的安全间隔期为4d。  相似文献   

20.
噻虫胺在水稻中的残留分析方法及其消解动态   总被引:2,自引:0,他引:2  
为了评价噻虫胺在水稻上的残留动态和环境安全性,于2012年分别在浙江、山东和湖南进行了噻虫胺残留动态试验,建立了噻虫胺残留的高效液相色谱—串联质谱(UPLC-MS/MS)分析方法。该方法对噻虫胺的检出限为0.01 mg·kg-1。添加浓度为0.01~1.0 mg·kg-1时,平均回收率为85%~106%;相对标准偏差(RSD)为1.8%~10.0%。该方法的灵敏度、精密度和回收率等均符合农药残留分析的要求。田间试验结果表明,噻虫胺在水稻植株和稻田中的消解动态符合一级动力学方程,消解半衰期分别为(2.5~4.4),(2.7~8.9)d,表明噻虫胺属易降解农药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号