首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为茶渣的开发利用提供参考,以铁观音茶渣为原料,可溶性膳食纤维(SDF)溶出量为检测指标,采用挤压膨化进行改性处理,探讨挤压温度、物料水分、螺杆转速对铁观音茶渣SDF提取的影响,并在单因素试验基础上采用二次回归旋转正交组合试验设计进一步优化,以获取最佳工艺条件。结果表明:铁观音茶渣SDF提取的最佳工艺为挤压温度67℃、物料水分含量43%、螺杆转速16 Hz,该条件下,铁观音茶渣的SDF溶出量为5.93%;同改性后的铁观音茶渣持油力和持水力分别为3.02 g/g和5.59 g/g。  相似文献   

2.
【目的】建立酶法提取玉米芯膳食纤维方法,优化复合酶法改性玉米芯不溶性膳食纤维(IDF)制 备可溶性膳食纤维(SDF)工艺。【方法】以玉米芯为原料,通过单因素试验优化碱性蛋白酶、α- 淀粉酶和糖 化酶预处理提取玉米芯粗膳食纤维(TDF)条件,结合正交试验优化复合酶(纤维素酶和木聚糖酶)法改性 IDF 制备 SDF 工艺。【结果】生物酶法提取玉米芯 TDF 条件:料液比 1 ∶ 10、pH 9.0、1.4% 碱性蛋白酶 50 ℃酶解 60 min;pH 6.5、0.3% 的 α- 淀粉酶和糖化酶(1 ∶ 1)、60 ℃水解 60 min,IDF 得率为 69.35%。复合酶法改 性 IDF 最佳工艺为:pH 5.0、温度 50 ℃、纤维素酶 1.2%、木聚糖酶 1.2%、酶解时间为 6 h、料液比为 1 ∶ 10, SDF 得率可达 22.16%。处理后的 SDF 持水力为 6.55 g/g,膨胀性为 6.69 mL/g,持油力为 4.65 g/g,分别比改性前 提高 40.26%、48.67%、74.16%。【结论】复合酶法改性玉米芯 IDF 制备 SDF 得率较单一纤维素酶和单一木聚糖 酶处理的 SDF 得率高,且显著提高产物 SDF 的持水力、持油力和膨胀性。  相似文献   

3.
以豌豆蛋白粉为原料,进行挤压组织化试验,对物料水分含量、螺杆转速、喂料速度以及挤压温度等因素进行分析,确定豌豆蛋白粉挤压的最佳工艺参数。同时,将组织化的豌豆蛋白添加到肉制品中,分析其在肉制品中的加工特性。研究发现,豌豆组织蛋白最佳挤压工艺参数为:物料水分含量50%,喂料速度35Hz,螺杆转速20Hz,机筒温度160℃;添加到肉制品中发现,添加量为4%豌豆组织蛋白的香肠在颜色、质构特性和感官评价方面效果最好,过高或过低都会对产品质量产生不利影响。  相似文献   

4.
为了生产出低污染、高转化率的环保型香鱼沉性挤压饲料,以沉性香鱼配合挤压饲料膨化度、近似密度和水中稳定性为重要特性指标,采用单因素和正交试验研究了物料含水率、螺杆转速和螺杆温度对其挤压工艺和饲料特性的影响.结果表明:物料含水率、螺杆转速和螺杆中、后部温度均影响饲料膨化度、近似密度和水中稳定性,正交方差分析显示,螺杆后部温度对近似密度有显著影响.通过单因素和正交试验确定香鱼配合饲料挤压工艺条件为:物料含水率30%、螺杆转速90 r/min、螺杆后部温度90℃,此条件下挤压饲料产品的近似密度最大,水中稳定性也较好,能很好地满足香鱼的摄食要求.  相似文献   

5.
试验探讨了双螺杆挤压机螺杆转速、机筒温度、物料水分对制备的碎米米糊冲调性的影响。结果表明,在喂料速度固定为400 g/min条件下,机筒温度为130℃,物料水分为21%,螺杆转速为230 r/min的操作参数下,产品膨化达到理想效果,适宜粉碎,色泽淡黄,米香气十足,产品孔隙度均匀一致。  相似文献   

6.
香菇柄膳食纤维酶法改性及功能特性研究   总被引:1,自引:0,他引:1  
通过单因素和正交试验,得到香菇柄膳食纤维酶法改性的最佳工艺条件为:香菇柄粉碎度180~250μm,纤维索酶添加量0.9%,酶解时间4.5 h,鹃解温度50℃,pH值4.5,液固比25:1,香菇柄中可溶性膳食纤维(Soluble dietary fibre,SDF)溶出量每100g为10.15 g.在此条件下获得的香菇俩膳食纤维为淡黄色的粉末状,粒度均匀,无特殊性气味,是较理想的膳食纤维.同时研究了香菇柄改性膳食纤维的功能特性,结果表明,其结合水力为5.88g/g,膨胀力为7.521 mL/g,持油力为2.21 g/g,粘度为5.70mPa·S.  相似文献   

7.
对猪血挤压膨化工艺参数进行了优化,并对最佳工艺条件下的猪血品质进行了分析.结果表明,影响猪血挤压膨化的三个参数的最佳取值范围为:膨化温度160-165℃、螺杆转速358rpm、原料水分含量18%,该条件下挤压膨化后的猪血可消化蛋白含量达到0.7 7g/g.膨化猪血蛋白品质分析表明,胃蛋白酶体外消化率可达到91.24%,较挤压膨化前提高了33.42%,其适口性也得到了很大的改善.  相似文献   

8.
利用自行研制的双螺杆挤压膨化设备对香蕉粉进行挤压膨化改性,以提高香蕉粉的加工特性。以产品容重为指标,在单因素试验的基础上,选择L9(34)正交试验进行优化,结果表明:物料水分含量18%、供料速度116 r/min、螺杆转速313 r/min、挤压温度130℃条件下进行挤压膨化,产品的容重最小、为0.101 g/mL,膨化效果最好。香蕉粉膨化后淀粉颗粒被降解,容重降低了86.4%,糊化度上升了69.65%,亮度下降了61.2%,特征峰基本都消失,结晶度由18.13%下降为2.16%。  相似文献   

9.
文章利用双螺杆挤压膨化机对大豆进行浸油前预处理,在获得较优的粕残油率基础上,为提高其生产率降低能耗,应用二次正交旋转组合试验设计方法找出系统参数(模孔直径、物料水分、螺杆转速、套筒温度)对机械生产性能(生产率、度电产量)的影响规律。结果表明,模孔直径26mm、物料水分18%、螺杆转速160r·min-1、套筒温度120℃的组合时,生产率最优;模孔直径26mm、物料水分18%、螺杆转速160r·min-1、套筒温度60℃的组合时,度电产量达到最佳。  相似文献   

10.
采用超声波辅助酶法提取百香果籽中的可溶性膳食纤维(SDF),以期缩短提取时间并提高SDF得率。通过单因素探讨纤维素酶浓度、超声波功率、提取温度、料液比和水浴时间对百香果籽SDF得率影响,并在此基础上设计正交试验优化提取工艺条件。结果表明:超声波辅助酶法提取百香果籽SDF最佳工艺条件为纤维素酶浓度1.5%、超声波功率120 W、料液比(g/mL)1∶15、提取温度55℃、水浴时间160 min,以该工艺条件提取百香果籽SDF,提取率可达5.12 %。  相似文献   

11.
采用超声波辅助酶法提取百香果籽中的可溶性膳食纤维(SDF),以期缩短提取时间并提高SDF得率。通过单因素探讨纤维素酶浓度、超声波功率、提取温度、料液比和水浴时间对百香果籽SDF得率影响,并在此基础上设计正交试验优化提取工艺条件。结果表明:超声波辅助酶法提取百香果籽SDF最佳工艺条件为纤维素酶浓度1.5%、超声波功率120 W、料液比(g/mL)1∶15、提取温度55℃、水浴时间160 min,以该工艺条件提取百香果籽SDF,提取率可达5.12%。  相似文献   

12.
喻远东  刘京红 《吉林农业科学》2019,44(4):98-103,115
本研究探讨了挤压膨化技术对蓝莓果渣中可溶性膳食纤维(SDF)含量的影响。在单因素实验基础上利用Design Expert 8.0进行Box-Behnken实验设计,设计了4因素3水平的响应面分析实验。结果表明,获得高可溶性膳食纤维含量的最佳挤压工艺参数为:物料含水量30%、喂料速度21 Hz、螺杆转速156 r/min、机筒温度112℃。与挤压膨化前蓝莓果渣样品相比,采用最佳挤压参数处理后的蓝莓果渣,其可溶性膳食纤维含量提高了38.52%,提高了蓝莓果渣的开发利用价值。  相似文献   

13.
香菇柄膳食纤维的挤压增溶及提取   总被引:2,自引:0,他引:2  
采用挤压的方法提高香菇柄膳食纤维的水溶性,对挤压工艺和提取工艺因素对可溶性膳食纤维得率的影响作了探讨,并对挤压工艺条件进行了优化。结果说明,挤压可以显著增加SDF的水平(P〈0.001),而提取条件对SDF提取结果没有显著的影响,挤压的最佳工艺条件为入料水分191.0g/kg,螺杆转速60r/min,模端温度140℃。  相似文献   

14.
目的 以小米粉为主要原料复配脱脂大豆粉,用双螺杆挤压法开发升糖指数较低的方便粥,并优化其加工工艺。方法 根据FAO/WHO标准模式确定脱脂大豆粉复配比例。在单因素试验基础上运用Box-Behnken Design(BBD)方法设计优化试验,研究挤压温度、螺杆转速、物料水分含量和烤炉温度对方便粥品质的影响,最终确定最优加工工艺条件。结果 脱脂大豆粉添加量(w)为30%时,小米粉与其互补后必需氨基酸评分均大于1,符合FAO/WHO标准模式。最佳加工工艺条件为:挤压温度145 ℃,螺杆转速220 r/min,水分含量35%(w)。以优化出的工艺条件进行试验,获得糊化度较高(86.72%)、升糖指数较低(63.21)、复水率较高(305%)并且感官评分较高(93分)的小米方便粥产品。结论 工艺条件对方便粥的理化性质和食用品质影响显著,其变化规律可为其他相关产品的开发提供理论依据。  相似文献   

15.
以混合杂粮粉(蚕豆粉∶荞麦粉∶魔芋精粉质量比10∶9∶1)为原料制备杂粮膨化营养粉,以可溶性膳食纤维(SDF)为指标,结合单因素试验和响应面试验优化了制备工艺,并通过体外胃肠道模型研究了产品的消化特性。结果表明,杂粮膨化营养粉制备的最佳参数组合为:物料含水量16%,Ⅲ区挤压温度142℃,螺杆转速146 r/min,在该条件下,产品中SDF含量达到(18.13±0.15)%。扫描电子显微镜结果显示,原料粉体颗粒发生了有效膨胀,原有的致密结构受到破坏。挤压膨化营养粉的碳水化合物水解指数,估计血糖生成指数和估计血糖负荷指数等均显著低于杂粮原料粉,并且达到了低血糖生成指数产品标准。  相似文献   

16.
以枸杞酒糟为原料,采用超微粉碎结合超声波-碱法进行处理,研究枸杞酒糟可溶性膳食纤维(Soluble dietary fiber,SDF)提取的工艺条件,并测定提取的SDF理化性质。以单因素试验结合响应面试验优化分析,获取最优工艺条件,并对提取的SDF进行粉粒结构、持水力、膨胀力、持油力、羟自由基(·OH)清除率、超氧阴离子自由基(O■)清除率的测定。结果表明,料液比为1∶12、超声波时间为40 min、氢氧化钠质量分数为8%、超声波功率为250 W时SDF的提取率最高,达到24.55%。SDF粉碎后径距为(2.1±0.001)μm、比表面积为1.100 m~2/g、孔体积为6 340 cm~3/g、孔径为23.980 nm,具有良好的粉粒参数。SDF持水力为(4.35±0.07)g/g、膨胀力为(4.67±0.13)mL/g、持油力为(5.02±0.07)g/g。SDF对·OH和O■具有较好的清除作用。  相似文献   

17.
提取玉米皮膳食纤维的条件优化   总被引:5,自引:1,他引:4  
通过单因素试验和正交试验,探讨了加酶量、酶解温度、酶解时间和酶解pH值对玉米皮膳食纤维提取率的影响效果.结果表明,提取玉米皮膳食纤维的最佳条件为复合酶添加量1.2%,酶解温度60 ℃,酶解55 min,pH7.0,提取率可达65.2%.玉米皮膳食纤维优质化挤压条件为物料加水量20%,挤压温度130 ℃,螺杆转速130 r/min,玉米皮中的水溶性膳食纤维含量可由15.87%提高到21.65%.  相似文献   

18.
采用挤压的方法提高香菇柄膳食纤维的水溶性,对挤压工艺和提取工艺因素对可溶性膳食纤维(SDF)得率的影响作了探讨,并对挤压工艺条件进行了优化。结果说明,挤压可以显著增加SDF的水平(P<0.001),而提取条件对SDF提取结果没有显著的影响。挤压的最佳工艺条件为入料水分191.0g/kg,螺杆转速60r/min,模端温度140℃  相似文献   

19.
以麦麸、豆渣、麦胚为主要原料,利用响应面分析,研究挤压温度、螺杆转速、物料湿度及粒度对低能高纤食品产品理化特性的影响。结果表明,产品的硬度随着挤压温度增加而增加,随着物料湿度及粒度的增大而降低;产品的持水性随着挤压温度及物料湿度的增加先增大后减小,且在150℃左右时达到最大值,随着物料粒度的增大而增大;螺杆转速对硬度及持水性的影响较小;产品的水溶性蛋白含量与挤压温度、螺杆转速、物料湿度及粒度均成抛物线关系。  相似文献   

20.
挤压膨化提高甘薯渣中可溶性膳食纤维含量的研究   总被引:2,自引:0,他引:2  
采用双螺杆挤压膨化机处理甘薯渣,通过高温、碾磨和剪切作用,使甘薯渣中不溶性膳食纤维转化为可溶性膳食纤维,并通过响应面分析,确定最适的挤压膨化工艺参数。试验表明:在物料水分含量18.75%、挤压膨化机桶壁温度159.7℃、转筒转速91 r/min条件下处理甘薯渣,物料中可溶性膳食纤维含量为9.64%,比未处理的提高了6.3个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号