首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
高振  宋萍  黄和 《安徽农业科学》2012,40(32):15581-15584
脂肪酶是一种重要的工业用酶,已广泛应用于食品、精细化工、医药和能源等领域。细菌脂肪酶是生物催化剂的最重要组成部分。文中综述了细菌脂肪酶的基因结构、表达、分泌、折叠等方面的研究进展,并展望了细菌脂肪酶基因工程的研究方向及前景。  相似文献   

2.
生物柴油是一种可再生、可生物降解的清洁能源,可部分替代石化柴油.酶法催化合成生物柴油具有反应条件温和、无污染、产品易回收等优点,市场应用前景广阔.对脂肪酶催化合成生物柴油的分子机制,以及水、醇和有机溶剂对脂肪酶催化合成的影响进行了综述,并展望了脂肪酶催化合成生物柴油的前景.  相似文献   

3.
酶催化制备生物柴油的研究进展   总被引:1,自引:0,他引:1  
生物柴油是一种对环境友好的可再生能源,酶法制备生物柴油比化学法对环境更有无法比拟的优越性。对目前脂肪酶催化酯交换合成生物柴油的主要工艺和对高效廉价脂肪酶的开发进行了综述。同时展望了酶法催化合成生物柴油的前景。  相似文献   

4.
脂肪酶及其在食品工业中的应用   总被引:9,自引:0,他引:9  
脂肪酶是一种具有广泛应用潜力的生物催化剂,本文介绍了脂肪酶在食品工业中的应用情况.  相似文献   

5.
生物柴油生产用脂肪酶资源及研发现状   总被引:2,自引:0,他引:2  
归纳分析了目前生物柴油酶法生产工艺中使用的脂肪酶种类、国内外产品市场供求情况,并重点介绍了南极假丝酵母脂肪酶、洋葱假单胞菌脂肪酶以及米根霉脂肪酶的研发现状.  相似文献   

6.
微生物脂肪酶应用研究进展   总被引:5,自引:0,他引:5  
兰立新  肖怀秋 《安徽农业科学》2010,38(14):7547-7548,7561
微生物脂肪酶是一种重要的工业酶类,也是当前国内外的研究热点。对脂肪酶在食品工业、有机合成、生物柴油合成、手性药物合成等方面的应用研究近况进行了综述,并进行了展望。  相似文献   

7.
韩颖  孟宪梅 《安徽农业科学》2012,(27):13234-13235,13253
碱性脂肪酶是具有重要工业价值的酶制剂,在医药、化工等领域应用广泛。该研究综述了碱性脂肪酶的酶学性质、分子结构以及基因工程育种等,重点介绍了扩展青霉碱性脂肪酶的分子生物学方面研究进展。  相似文献   

8.
[目的]探讨一种新型的脂肪酶固定化载体。[方法]采用酶底物类似物油酸分子修饰的纳米凝胶包被生物炭表面,首次制备出一种新型高效的纳米凝胶包被生物炭基质作为脂肪酶酶固定化载体。[结果]通过油/水界面的活化效应激活脂肪酶分子的催化活性位点,并通过凝胶的溶胀/退溶胀作用增强脂肪酶的固定化效果,所制备的新型固定化脂肪酶的催化活性和催化稳定性都得到了充分提高。[结论]新型固定化脂肪酶为酶固定化技术研究提供了材料。  相似文献   

9.
从新疆一号冰川土壤来源的54株低温细菌中筛出11株产脂肪酶菌株,其中一株短状杆菌Brachybacterium sp. DB5产脂肪酶活力较高。通过同源克隆和TAIL-PCR技术从Brachybacterium sp. DB5 基因组DNA中克隆得到一个脂肪酶基因LipDB5。LipDB5基因全长933 bp,编码310个氨基酸和一个终止密码子,理论蛋白分子质量为34.8 kDa,无信号肽序列。将LipDB5基因在大肠杆菌中进行重组表达,重组脂肪酶最适反应温度30℃,在5℃时能保持最高活力的34.7%,对热不稳定,60℃ 处理 30 min 剩余17.4 %酶活。研究结果表明LipDB5具有低温脂肪酶的性质,在低温生物催化领域具有潜在的应用前景。  相似文献   

10.
脂肪酶法制备生物柴油进展   总被引:1,自引:0,他引:1  
黄一波  王芳 《安徽农业科学》2011,(10):6048-6049,6052
脂肪酶催化法制备生物柴油具有反应条件温和,操作简单,环境友好等优点。综述了脂肪酶的选择,比较了游离酶与固定化酶的特点,分析了影响酶催化效率的因素。尤其对离子液体体系以及纳米粒子技术在生物柴油制备中的最新进展进行了相应介绍。  相似文献   

11.
微生物碱性脂肪酶研究及其应用均非常广泛,而关于水稻种子碱性脂肪酶却知之甚少。介绍一种新的水稻种子碱性脂肪酶活性平板检测方法,并利用该方法筛选碱性脂肪酶活性高低不同的材料以研究碱性脂肪酶在稻谷加速老化过程中的作用。结果表明碱性脂肪酶检测方法及其在稻谷人工老化过程中的作用对揭示稻谷储藏特性具有重要研究价值。  相似文献   

12.
薛静  陶树兴  田泽英  苏蕊  丛寅 《安徽农业科学》2011,39(15):8826-8830
[目的]筛选脂肪酶高活性菌株作为脂肪酶生产菌株和脂肪酶基因的供体菌。[方法]从油脂厂等地采集26份含菌样品,采用溴甲酚紫平板对样品进行初筛,以产脂肪酶发酵培养基摇瓶复筛,获得1株产脂肪酶活性较高的菌株09-7-1,经鉴定该菌株为黑曲霉(Aspergillus niger)。采用正交试验对影响该菌株产酶的因素进行了研究,并探讨了该菌株所产脂肪酶的性质。[结果]该菌株最佳产酶条件:碳源为0.5%的可溶性淀粉,氮源为0.2%的酵母膏,培养温度为32℃,发酵液pH为5.2,该菌株最初发酵液中酶活力为13.164 U/ml,优化后酶活力达24.112 U/ml,是最初酶活力的1.83倍。该菌株所产脂肪酶最适作用温度为30℃,最适作用pH为7.0;酶液在60℃保温90 min后,活性损失较少,pH为5.5~10.0内稳定。[结论]该研究可为脂肪酶生产和基因研究奠定基础。  相似文献   

13.
[目的]得到能使大豆油彻底水解的复合脂肪酶配方。[方法]采用不同来源的脂肪酶对大豆油进行水解,以酸值的变化来衡量水解程度,研究了单一脂肪酶和复合脂肪酶对大豆油的水解条件。[结果]单一脂肪酶水解时质量分数2%时水解最好,水解酸值达到126 mgKOH/g油脂;使用复合脂肪酶时水解效率明显提高,达到150 mgKOH/g油脂左右。[结论]复合脂肪酶是一种既经济又很高效的脂肪酶,它可使大豆油的水解率大大提高,并且克服了脂肪酶制备成本高、易失活、转化效率不太高等缺点,可以应用到工业上,降低成本价,获得更大的利益。  相似文献   

14.
Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCl, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U mL-1 The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase.The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca2+, and thermostability decreased in the presence of Ca2+, therefore the lipase was Ca2+-dependent cold-adapted enzyme.  相似文献   

15.
利用RT-PCR方法克隆瓦氏黄颡鱼(Pelteobagrus vachelli)肝脂酶cDNA序列片段,并对其基因结构和系统进化关系进行分析.瓦氏黄颡鱼肝脂酶cDNA片段长1065 bp,编码353个氨基酸.肝脂酶氨基酸序列同源性分析结果表明,瓦氏黄颡鱼与其他鱼类的同源性为62%-100%.瓦氏黄颡鱼肝脂酶氨基酸残基包含糖基化位点、催化位点、催化中心三联体位点、脂质结合位点和多肽"盖"等主要结构区域.系统进化树分析表明,瓦氏黄颡鱼肝脂酶与草鱼、鳙、斑马鱼肝脂酶聚为一支.因此,瓦氏黄颡鱼的肝脂酶在鱼类进化中较为保守.  相似文献   

16.
【目的】筛选高产脂肪酶菌株并鉴定其种属,研究脂肪酶的酶学性质.【方法】以橄榄油为唯一碳源对富含油污土壤中产脂肪酶微生物进行富集培养,用中性红平板进行初筛,结合改进铜皂分光光度计法测定酶活力;对筛选的高产脂肪酶菌株进行形态学观察和相关生理生化实验,再结合16S rDNA序列分析确定其种属;确定该菌株所产脂肪酶的最适作用温度和pH值,并研究金属离子、有机溶剂以及表面活性剂对酶活的影响.【结果】筛选得到一株高产脂肪酶菌株LZ-5,其所产脂肪酶的酶活力为4.78 U/mL;菌种鉴定为表皮葡萄球菌(Staphylococcus epidermidis).该酶最适作用温度为40℃,最适pH值为9.0;Ca~(2+)、Mg~(2+)对酶活力有促进作用,Fe~(2+)、Zn~(2+)、EDTA、SDS、甲醇和乙醇对酶活力有抑制作用,对Na~+、K~+、丙三醇的耐受力较高.【结论】成功分离一株表皮葡萄球菌高产脂肪酶菌株.  相似文献   

17.
草鱼、鲤、鲢、鳙和尼罗非鲫脂肪酶活性的比较研究   总被引:7,自引:0,他引:7  
草鱼和鲤肝胰脏脂肪酶活性明显比肠道的高(P<0.025);鲢和鳙肝胰脏脂肪酶活性明显低于肠道的(P<0.025);尼罗非鲫肝胰脏和肠的脂肪酶活性几乎相等(P>0.05),而胃脂肪酶活性明显比肝胰脏和肠道的低(P<0.005)。五种鱼的肝胰脏脂肪酶活性由高到低的顺序为:草鱼>尼罗非鲫>鲤>鳙>鲢;肠脂肪酶活性由高到低的顺序为:鲢>鳙>尼罗非鲫>草鱼>鲤。结果表明:鱼类的食性与脂肪酶活性无明显相关。草鱼、鲢和鳙的肠脂肪酶活性,中肠略高于前肠和后肠;尼罗非鲫和鲤的肠脂肪酶活性由前往后逐渐下降。  相似文献   

18.
粗脂肪酶活力的测定方法的研究   总被引:2,自引:0,他引:2  
为研究粗脂肪酶活力的测定方法, 实验采用正交试验设计, 以酶用量(% ), 反应时间(min) 和水解温度(℃) 为因素, 以食用色拉油为底物, 经脂肪酶催化水解, 用95%乙醇终止反应, 测定其酸价, 选择出粗脂肪酶水解色拉油的最佳条件, 在此水解条件下, 分别测得标准脂肪酶和粗脂肪酶水解液的酸价, 将二者进行比较, 从而求得粗脂肪酶的活力。结果表明, 最佳水解条件为: 水解温度37℃, 酶用量0 .02%, 反应时间20min。粗脂肪酶的活力为99 4U/mg。  相似文献   

19.
【目的】探究不同品种间燕麦脂肪酶活性的差异机制,分析影响燕麦脂肪酶活性的内在因素,为筛选低脂肪酶优质品种提供理论依据。【方法】选取3个燕麦主产地的6个主栽品种为研究对象,测定其脂肪酶活性、营养指标、物理性状及农艺指标。通过相关性分析筛选与燕麦脂肪酶密切相关的指标,通过聚类分析将多个燕麦样品按脂肪酶活性分类,通过主成分分析将具有相关性的数据组转化为便于统计分析的综合变量,考察燕麦品种间的脂肪酶活性差异;结合灰色关联度与多元逐步回归的分析方法,得出各品种与理想品种的关联度,并以脂肪酶活性为因变量,拟合得出脂肪酶活性预测模型,筛选低脂肪酶活性优质品种。【结果】脂肪酶活性与粗脂肪含量呈显著正相关(r=0.32,P<0.05),且脂肪含量、不饱和脂肪酸含量、脂肪酶活性、酸值4个指标的变化趋势一致;脂肪酶活性与粗蛋白含量呈极显著正相关(r=0.46,P<0.01),且脂肪酶活性越高的品种,其位于31—43 kD的电泳条带所占百分比越大;脂肪酶活性与籽粒容重呈极显著负相关(r=-0.71,P<0.01);脂肪酶活性与生育期呈极显著正相关(r=0.37,P<0.01);经灰色关联度分析知白燕18号、迪燕1号与理想品种X0关联度较高,分别为0.951和0.883,属于低脂肪酶且高营养品种;经多元逐步回归,仅保留影响显著的容重与蛋白质含量作为自变量,建立脂肪酶活性预测模型Y(脂肪酶活性)=720.274-2.255×容重(g·L-1)+75.761×蛋白质含量(%),P<0.01,R 2为0.658。【结论】不同品种间燕麦脂肪酶活性差异明显,脂肪含量、蛋白质含量、容重、生育期是燕麦脂肪酶活性的主要影响因素,灰色关联法和逐步回归分析相结合建立的优质品种筛选与脂肪酶活性预测模型,可以有效地对燕麦品种进行综合评价,并优选出低脂肪酶活性品种。  相似文献   

20.
Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCI, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U·mL^-1. The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase. The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca^2+, and thermostability decreased in the presence of Ca^2+, therefore the lipase was Ca^2+ -dependent cold-adapted enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号