首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
大豆营养丰富,但其抗原蛋白的高致敏性易导致严重过敏反应。大豆球蛋白和β-伴球蛋白是大豆的主要过敏原,其抗原表位对致敏性起决定作用。通过适宜的加工手段改变过敏原蛋白表位结构,从而影响致敏性。糖基化是当前最有前景实现工业化的非酶加工新技术,不仅能改变蛋白质的结构、营养特性,同时能降低致敏性。文章介绍了大豆主要抗原蛋白的结构、糖基化反应,重点总结了大豆糖基化抗原蛋白致敏性的变化及其对肠道健康的影响,同时对糖基化蛋白面临的挑战进行展望,旨在为糖基化蛋白低致敏性产品的开发及促进肠道健康提供参考。  相似文献   

2.
蒸汽处理对纯化大豆抗原含量及免疫原性的影响   总被引:7,自引:0,他引:7  
将大豆球蛋白和β-伴大豆球蛋白分别从生、熟大豆中分离纯化后,通过电泳进行分析鉴定。将经过鉴定后的纯化抗原皮下注射18~22g的昆明小鼠,利用琼脂扩散试验及免疫酶技术检测所得抗血清与原有抗原是否发生免疫应答反应。结果表明,生大豆所得提纯样品中11S 2峰和7S 1峰分别为大豆球蛋白和β伴大豆球蛋白。蒸汽处理可使大豆球蛋白含量明显减少,免疫原性丧失;而β伴大豆球蛋白经同样处理后,含量虽稍有下降,其免疫原性却依然存在。  相似文献   

3.
不同加热时间对大豆蛋白质溶解度影响的研究   总被引:1,自引:0,他引:1  
设置10、20、30、40和50min五个热处理时间,研究在100℃干热条件下不同加热时间对大豆蛋白质溶解度的影响。结果表明:大豆粉的蛋白质溶解度随着加热时间的延长呈下降趋势,当加热时间由20min增加到30min时大豆的蛋白质溶解度下降明显。100oC干热条件下,大豆的适宜热处理时间为20-40min。  相似文献   

4.
本试验通过植物乳酸菌对豆粉进行液态发酵,在发酵24,36,48,60,72 h时采集发酵样品进行水解度和免疫活性的检测,结果表明:(1)48 h为植物乳酸菌发酵豆粉的最佳时间,可去除71.08%的β-伴大豆球蛋白和64.22%的大豆球蛋白的免疫活性(P<0.01),对β-伴大豆球蛋白的去除程度显著高于大豆球蛋白(P<0...  相似文献   

5.
大豆贮藏蛋白主要由大豆球蛋白和伴大豆球蛋白组成[1-2],大豆肽是大豆蛋白质酶解的产物,具有多种生物活性作用。伴大豆球蛋白水解肽作为一种植物蛋白来源的多肽,已得到人们的广泛关注。而其抗菌活性研究方面的报道较少,并且很久以来被  相似文献   

6.
试验旨在提高狂犬病病毒(rabies virus,RV)糖蛋白(G)在大肠杆菌(E.coli)BL21(DE3)中的表达量。通过优化蛋白质诱导表达的温度、时间、诱导剂浓度等条件,以提高该蛋白质的表达量。SDS-PAGE电泳分析结果显示,重组质粒在1 mmol/mL IPTG、30 ℃诱导6 h条件下蛋白表达量最高,经GST-resin亲和层析柱法纯化获得的纯化蛋白约为36 ku,与预期大小相符。Western blotting结果显示,表达蛋白具有很好的免疫原性和特异性。结果表明,RV G融合蛋白的优化表达和纯化为RV亚单位疫苗及中和抗体的研制奠定了基础。  相似文献   

7.
对重组原核表达载体pETN的表达条件进行了优化,在最佳诱导条件下获得了猪生殖与呼吸综合征病毒重组核衣壳蛋白(N蛋白)。利用His Bind蛋白质纯化试剂盒对表达产物进行了纯化,再分别用SDS—PAGE电泳及Western—blotting试验对纯化产物的纯化效果及特异性进行了检测。结果表明,纯化产物的纯度可达95%以上,并具有良好的免疫学反应活性。  相似文献   

8.
1大豆营养价值分析 蛋白质。大豆蛋白质含量高,一般在35%,大豆蛋白主要由球蛋白(约占63%)、清蛋白(约占12%)和谷蛋白(8%)组成。大豆蛋白质量很大程度上由大豆球蛋白决定。大豆球蛋白由12个亚基组成,以11S、7S亚基为构成大豆球蛋白的主体。  相似文献   

9.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P<0.05),粗纤维含量则显著下降(P<0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P<0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P<0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P>0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

10.
本文拟对EDTA法、蛋白酶K法和NaOH法去除鸡蛋壳壳膜及表面角质层的条件进行优化并比较,以期获得分离蛋壳有机层和矿化晶体层的有效方法。通过SS-550扫描式电子显微镜观察发现,EDTA法中以5%EDTA处理鸡蛋壳30min的效果相对较好,能去除蛋壳内膜及尽可能多的外膜,但是表面角质层的去除效果较弱;蛋白酶K法中以50μg/mL蛋白酶K孵育鸡蛋壳48h的效果相对较好,能完全去除表面角质层和蛋壳内膜,但蛋壳外膜尚不能彻底去除干净;而NaOH法中则以2%NaOH于99℃中煮鸡蛋壳17min的效果最理想,既能彻底去除壳膜又能完全去除表面角质层。3种方法相比,去除鸡蛋壳壳膜及角质层的理想方法是于99℃的2%NaOH中煮17min。  相似文献   

11.
本试验的目的是优化畜禽肉中硝基呋喃代谢物超高效液相色谱-串联质谱测定方法。样品经洗涤后去除杂质,在酸性条件下水解,与加入的2-硝基苯甲醛溶液进行衍生化反应,反应产物调pH7.6后经乙酸乙酯提取,氮气吹干,5%乙腈含0.1%甲酸水溶液溶解残余物,用超高效液相色谱-串联质谱仪测定。四种硝基呋喃代谢物内标的使用补偿了前处理过程对最后定量结果的影响,结果准确可靠。  相似文献   

12.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P0.05),粗纤维含量则显著下降(P0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

13.
为提高豆粕蛋白质利用率和动物生产性能,分析了不同来源的蛋白酶对豆粕中抗原蛋白(大豆球蛋白和β-伴大豆球蛋白)含量的影响,将经过蛋白酶处理的豆粕进行聚丙烯酰胺凝胶电泳(SDS-PAGE)检测分析。结果表明,同等酶活的不同蛋白酶对豆粕中的抗原蛋白降解程度有较大差别。经过发酵条件的优化,最终选择酸性蛋白酶、中性蛋白酶、乳酸菌和枯草芽孢杆菌混合发酵方式,最终使得发酵豆粕乳酸含量达到2.76%,酸溶蛋白含量14.76%,大豆球蛋白含量降低至25.3 mg/g。  相似文献   

14.
试验旨在应用康奈尔净糖类-蛋白质(CNCPS)体系和傅里叶红外光谱扫描(ATR-FT/IR)图谱技术评价普通豆粕、糖基化豆粕、膨化大豆和大豆皮4种奶牛常用蛋白饲料的蛋白质营养和分子结构差异。采集天津和北京地区的普通豆粕、糖基化豆粕、膨化大豆和大豆皮4种风干样品,进行营养组分分析。通过常规营养成分含量测定发现,糖基化豆粕中的粗蛋白(CP)含量(51.11±0.33)与其他饲料样品存在显著差异(P0.05),膨化大豆中的粗脂肪(EE)含量(18.59±0.73)显著高于其他3种样品(P0.05),大豆皮中CP、EE、中性洗涤不溶蛋白(NDICP)、酸性洗涤不溶蛋白(ADICP)和可溶性蛋白(SCP)含量均显著低于其他3种饲料样品(P0.05)。CNCPS分析得出,非蛋白氮(PA)含量由少到多顺序为普通豆粕大豆皮膨化大豆糖基化豆粕,中速降解真蛋白质(PB2)含量糖基化豆粕最高(81.29±0.22),差异显著(P0.05),大豆皮快速降解真蛋白质(PB1)含量(21.85±2.50)及慢速降解真蛋白质(PB3)含量(35.56±4.21)均显著高于其他饲料样品(P0.05),普通豆粕不可降解氮(PC)含量(9.15±0.17)最高。从蛋白质分子结构分析结果得出大豆皮酰胺I区峰面积、酰胺II区峰高和峰面积及α-螺旋区与β折叠峰高均低于其他样品(P0.05),大豆皮α-螺旋区与β折叠区比值(1.39±0.26)显著低于其他3种样品(P0.05)。  相似文献   

15.
利用乳清蛋白和岩藻多糖为原料,通过干法糖基化手段研究乳清蛋白和岩藻多糖糖基化反应过程中的褐变程度变化,并对不同反应时间段糖基化产物的1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除率及还原力进行测定。结果表明:糖基化反应能够显著增加体系的褐变程度,同时与单独乳清蛋白或岩藻多糖相比,糖基化反应能显著增加二者混合物的DPPH自由基清除率和还原力;乳清蛋白和岩藻多糖质量比为1∶3、反应时间为80 h时,其DPPH自由基清除率达到最高(74.28%),与0 h相比提高了30%,但是仍低于0.01%VC对照组。  相似文献   

16.
对重组原核表达载体pET-ORF2的表达条件进行优化,结果表明,最佳IPTG诱导浓度为1.0mmol/L,最佳诱导时间为5h。在最佳诱导条件下获得猪圆环病毒2型重组Cap蛋白的基础上,利用HisBind蛋白质纯化试剂盒对表达产物进行纯化,再分别用SDS-PAGE电泳和Westernblotting对纯化产物的纯化效果及特异性进行检测,结果显示表达产物纯化良好,并能被PCV-2阳性血清识别,具有良好的抗原性。  相似文献   

17.
为获得高蛋白含量和良好免疫原性的抗原,利用杆状病毒表达体系进行猪圆环病毒2型(PCV2)重组Cap蛋白表达,采取正交试验设计确定三因素(High five细胞浓度、病毒感染量、蛋白表达时间)的最佳组合,对重组病毒株vBac-SP-PCV2的表达条件进行优化,利用His Bind蛋白质纯化试剂盒对表达产物进行纯化,纯化蛋白作为标准蛋白用于Western blotting中蛋白质定量分析和蛋白免疫原性检测。结果显示:2.0×10^6/mLHigh five细胞浓度、1.5MOI病毒感染量、蛋白表达时间168h为重组PCV2-rCap蛋白表达的最佳条件,表达产物纯化良好,并能被PCV2多克隆抗体识别,免疫豚鼠可诱导产生高水平PCV2抗体。研究表明纯化PCV2-rCap蛋白可作为标准蛋白用于后续表达蛋白的定量分析和PCV2亚单位疫苗研发候选抗原。  相似文献   

18.
为获得高蛋白含量和良好免疫原性的抗原,利用杆状病毒表达体系进行猪圆环病毒2型(PCV2)重组Cap蛋白表达,采取正交试验设计确定三因素(High five细胞浓度、病毒感染量、蛋白表达时间)的最佳组合,对重组病毒株vBac-SP-PCV2的表达条件进行优化,利用His Bind蛋白质纯化试剂盒对表达产物进行纯化,纯化蛋白作为标准蛋白用于Western blotting中蛋白质定量分析和蛋白免疫原性检测。结果显示:2.0×106/mL High five细胞浓度、1.5 MOI病毒感染量、蛋白表达时间168 h为重组PCV2-rCap蛋白表达的最佳条件,表达产物纯化良好,并能被PCV2多克隆抗体识别,免疫豚鼠可诱导产生高水平PCV2抗体。研究表明纯化PCV2-rCap蛋白可作为标准蛋白用于后续表达蛋白的定量分析和PCV2亚单位疫苗研发候选抗原。  相似文献   

19.
拟利用前期筛选的分离于斜带石斑鱼肠道的短小芽孢杆菌SE5、分离于小丑鱼肠道的乳酸乳球菌17和分离于酒曲的酿酒酵母菌Sa,开发一种水产专用发酵豆粕。先通过控制因素,确定复合菌株的配伍比例、接种顺序、最适接种量、温度、料液比和发酵时间,然后采用正交试验优化发酵工艺。结果显示:以大豆球蛋白和β-伴大豆球蛋白含量为指标,最佳发酵工艺为:短小芽孢杆菌SE5:酿酒酵母菌Sa:乳酸乳球菌17比例为2:2:1;分别在0 h接入短小芽孢杆菌SE5,12 h接入酿酒酵母菌Sa,24 h接入乳酸乳球菌17;发酵温度30℃,总接种量10%,发酵时间为48 h,料液比1:1。在最优工艺下,发酵豆粕中大豆球蛋白和β-伴大豆球蛋白降解率分别为71.48%和73.29%。  相似文献   

20.
为了探讨天然产物儿茶素能否抑制甘油醛/Fenton反应诱导的BSA非酶糖基化,采用Girard′s reagent T实验检测儿茶素抑制甘油醛代谢产物的抑制作用;构建甘油醛/Fenton反应诱导的牛血清白蛋白(BSA)非酶糖基化模型,并探讨儿茶素、N-乙酰半胱氨酸(NAC)、氨基胍(AG)和吡哆胺对此模型非酶糖基化的抑制作用。结果儿茶素和NAC可抑制甘油醛在Fenton反应条件下的代谢产物;NAC和AG可抑制甘油醛诱导牛血清白蛋白(BSA)形成的Schiff base,儿茶素、NAC和AG可抑制甘油醛诱导形成的羧甲基赖氨酸(CML)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号