首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用模拟实验与现场实验相结合的方法,通过添加3种微生态制剂及碳水化合物作为碳源,研究了其在生物絮团形成与水质调节中的作用,并分析了其对水中无机氮含量、悬浮物、细菌总数及幼参生长的影响,为阐明生物絮团在刺参工厂化苗种培育中的生态环境调控作用提供依据。结果表明,亚硝态氮易于在培育池水体中累积,可高达0.25 mg/L;添加芽孢杆菌后,水中总悬浮物含量和细菌总数均为最高值,且未检测到弧菌和大肠菌群;第20天,仅添加蔗糖组幼参增重与特定生长率均明显高于其他复合碳源组和对照组(P0.05),分别为44.34 g和2.19%/d;而添加蔗糖和芽孢杆菌组增重与特定生长率均明显高于其他处理组和对照组(P0.05),分别为66.60 g和3.01%/d;复合碳源组幼参增重与特定生长率随着玉米淀粉含量增加而逐渐降低,但与对照差异均不显著(P0.05)。结果显示,以蔗糖为碳源,添加芽孢杆菌形成的生物絮团不仅可以改善水体水质和微生态结构,还可以明显促进幼参的生长。  相似文献   

2.
为提高凡纳滨对虾种苗生产的生态化水平,分别以蔗糖、葡萄糖、淀粉为添加碳源,添加量为投饵量的50%,同时添加地衣芽孢杆菌,在1 000 L的水体中进行凡纳滨对虾生物絮团技术育苗实验。结果表明添加碳源组絮团含量明显高于对照组(不添加碳源和芽孢杆菌),且蔗糖组絮团的形成比淀粉组和葡萄糖组早;蔗糖组和葡萄糖组的氨氮、亚硝酸盐含量均显著低于对照组和淀粉组,其亚硝酸盐峰值浓度分别比对照组降低25.4%和31.4%,且未换水即自行下降;添加碳源各组絮团的粗蛋白、粗脂肪含量均显著高于对照组,粗蛋白含量最高的蔗糖组达到32.6%。仔虾幼体P14时,葡萄糖组和蔗糖组的仔虾体长分别比对照组增长22.8%和19.2%(P0.01),差异极显著。表明在凡纳滨对虾生物絮团技术育苗中,蔗糖和葡萄糖作为添加碳源是合适的。  相似文献   

3.
为研究凡纳滨对虾育苗标粗阶段生物絮团形成所需要的适合碳源,设计3种不同碳源添加组(葡萄糖组、淀粉组和蔗糖组),每个处理组设置3个重复,实验期20 d,以分析不同碳源添加后对水体生物絮团的形成、营养成分、细菌群落结构及水质指标的影响。结果显示,在碳源添加量均为投喂量的80%时,形成的生物絮团可有效调节水质,降低水体中的氨氮和亚硝酸盐氮水平。3个碳源添加组水样中氨氮、亚硝酸盐氮和硝酸盐氮浓度显著低于对照组,淀粉组水样中氨氮、亚硝酸盐氮和硝酸盐氮浓度显著高于葡萄糖组和蔗糖组;最终对虾存活率统计结果显示,葡萄糖组、淀粉组、蔗糖组和对照组分别为72.9%、54.2%、69.8%和44.3%;淀粉组的生物絮团沉降体积(BFV)显著低于葡萄糖组,蔗糖组BFV最高,在13~15 d后3组均趋于稳定;葡萄糖组和蔗糖组的粗蛋白含量均显著高于淀粉组,葡萄糖组和蔗糖组则差异不显著;葡萄糖组和蔗糖组生物絮团中组氨酸、精氨酸、蛋氨酸等必需氨基酸和天冬氨酸、谷氨酸、丙氨酸等非必需氨基酸含量都显著高于淀粉组;葡萄糖组、淀粉组和蔗糖组的必需氨基酸指数(EAAI)值分别为0.93、0.89和0.92。3种类型生物絮团在门级水平的细菌群落共有18余种,其中变形菌门和拟杆菌门在各组占有比例均最高,淀粉组拟杆菌门含量显著高于其他2组,蔗糖组浮霉菌门和放线菌门含量显著高于葡萄糖组和淀粉组。研究表明,添加不同碳源可影响水体生物絮团的形成、营养成分、细菌群落结构和多样性,不同程度地改善水质。以必须氨基酸指数及存活率为评价指标,则葡萄糖和蔗糖都是凡纳滨对虾育苗标粗水体中适宜的碳源选择。  相似文献   

4.
水温18.2-21.9 ℃和盐度30-32下,在室内200 L塑料水槽中添加不同的碳源(葡萄糖、蔗糖、玉米淀粉、地瓜粉等)形成生物絮团,养殖体重(0.9±0.1 )g/只的仿刺参(Apostichopus japonicus )幼参2个月,探讨水体中的生物絮团对其体内主要消化酶和免疫性酶活性的影响。结果表明,养殖水体中添加淀粉、蔗糖有利于提高幼参体内消化酶(淀粉酶、蛋白酶)的活性。复合碳源组(葡萄糖:果糖:蔗糖:玉米淀粉:地瓜粉=0:3:4:2:1)幼参胃蛋白酶活性(10.63 U/mg prot)显著高于其它组,复合碳源更利于提高幼参胃蛋白酶活性。复合碳源组(葡萄糖:果糖:蔗糖:玉米淀粉:地瓜粉=1:2:4:1:2),幼参体壁中ALP活性最高,为2.66 U/mg;而玉米淀粉组中,幼参体液中SOD活性(204.66 U/mg )显著高于其他各试验组(P < 0.05)。添加碳源后制得的生物絮团可以提高幼参机体的免疫功能。  相似文献   

5.
为确定斑节对虾(Penaeus monodon)养殖系统中生物絮团形成所需的最适碳源及添加量,试验选取葡萄糖、蔗糖、糖蜜3种碳源按碳(C)与氮(N)比(C/ N)为20:1添加,再按日投饲量的0%、25%、50%、75%和100%添加蔗糖,以期获得其最适添加量。结果显示,添加3种不同糖作为碳源均可以显著提高斑节对虾的特定生长率(P ﹤0.05),而添加蔗糖可以显著提高斑节对虾的成活率(P ﹤0.05);与其他组相比,添加75%的蔗糖组可以显著提高斑节对虾的特定生长率和成活率(P ﹤0.05),促进异养细菌和浮游植物的繁殖,水体氨氮(NH4-N)、亚硝酸氮(NO2-N)等有害物质的浓度较低,过多的添加蔗糖却会起到反作用。结果表明添加75%的蔗糖最适合生物絮团在斑节对虾养殖系统中形成,并促进斑节对虾的生长。  相似文献   

6.
生物絮团对中华锯齿米虾生长及水质的影响   总被引:1,自引:0,他引:1  
实验以枯草芽孢杆菌和光合细菌为研究对象,研究了生物絮团对中华锯齿米虾养殖水体酸碱度、氨氮、亚硝酸氮、COD等水质指标的调节及其在促进米虾生长方面的作用。结果显示,添加了生物絮团的实验组,比对照组养殖水体的亚硝酸氮含量降低54%,COD水平降低39%,氨氮含量降低35%,pH值稳定保持在适宜的水平,中华锯齿米虾的存活率和增重率也有显著提高。结果表明,生物絮团的使用,能够有效调节水质,促进中华锯齿米虾的生长。  相似文献   

7.
本试验研究了饲料中添加芽孢杆菌对草鱼生长、肠粘膜抗氧化功能及养殖水体水质的影响。选取平均体重为(51.0±2.3)g的健康草鱼300尾,随机分成3组(对照组、处理组1和处理组2),每组3个重复,每个重复50尾鱼。其中对照组饲喂基础日粮,处理组1和2分别饲喂含复合芽孢杆菌(105 cfu/克饲料,枯草芽孢杆菌和解淀粉芽孢杆菌以1:1比例混合)和枯草芽孢杆菌(105 cfu/克饲料)的基础日粮。试验期为45d。结果表明,饲料中添加芽孢杆菌对养殖水体pH和硝酸盐氮含量无显著影响,但显著降低了从第21d到试验结束期间水体中亚硝酸盐氮的含量(处理组1第35d除外)。芽孢杆菌的添加同时显著降低草鱼的死亡率(P<0.05),并提高了草鱼的增重率和特定生长率。与对照组相比,处理组1和2草鱼的增重率分别提高了52.93%(P<0.01)和21.78%(P<0.05),特定生长率分别提高了44.44%(P<0.01)和16.67%(P<0.05);而且处理组1草鱼增重率和特定生长率分别比处理组2提高了25.58%(P<0.01)和23.81%(P<0.01)。肠粘膜抗氧化活性研究表明,与对照组相比,饲料中添加芽孢杆菌能提高草鱼肠粘膜超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性。以上结果提示,饲料中添加芽孢杆菌可以改善养殖水质和草鱼肠粘膜抗氧化功能,并显著促进草鱼生长并降低死亡率。  相似文献   

8.
为探究添加不同碳源物质所形成的生物絮团对团头鲂鱼种生长、消化酶以及抗氧化酶活性的影响,设计5个不同碳源物质的添加组[淀粉组、葡萄糖组、蔗糖组、甜蜜素组和复合碳源组(葡萄糖∶淀粉=1∶1)],其中淀粉组为对照组,每个碳源添加组设置3个重复。每个水泥池投放团头鲂鱼种20尾,初始体质量为(36.74±0.82)g,实验期为8周。结果发现:(1)形成的生物絮团可以有效地调节水质,降低水体中的氨氮和亚硝酸盐氮水平;(2)与对照组相比,葡萄糖组团头鲂鱼种的鱼体末质量显著提高23.1%,增重率显著提高39.4%,特定生长率也显著提高23.6%,饲料系数显著降低28.1%,但存活率并没有显著差异;(3)肠道组织光镜观察表明,团头鲂鱼种肠道单层柱状上皮附近存在未消化的生物絮团;(4)添加不同碳源形成的生物絮团对团头鲂鱼种体成分没有显著的影响;(5)复合碳源组的肠道总蛋白酶的活性(3.64±0.53)U/mg显著高于对照组275.3%,淀粉酶活性显著高于对照组(淀粉组)289.2%、葡萄糖组166.7%和蔗糖组860%;(6)葡萄糖组的团头鲂超氧化物歧化酶(SOD)活性为(238.67±13.63)U/mg,显著高于对照组的SOD活性72.5%,葡萄糖组团头鲂的过氧化氢酶(CAT)酶活性为(192.31±17.06)U/mg,显著高于对照组的CAT活性40.4%,与对照组的丙二醛(MDA)水平相比,葡萄糖组、蔗糖组、甜蜜素组和复合碳源组分别显著降低了69.0%、59.7%、38%.0和48.8%。研究表明,水体中添加葡萄糖为碳源能显著提高团头鲂鱼种的生长性能和抗氧化水平,并有效改善水质。  相似文献   

9.
为探究枯草芽孢杆菌(Bacillus subtilis)培育生物絮团对浮游生物的影响,以枯草芽孢杆菌作为试验菌种,以养殖池塘水为试验用水,在有机玻璃水族箱(100 cm×60 cm×50 cm)中进行为期40 d的生物絮团培育试验。试验以添加葡萄糖为处理组I,同时添加枯草芽孢杆菌和葡萄糖为处理II组,仅添加枯草芽孢杆菌为处理III组,对照组不添加任何物质。试验过程中每5 d对各组水体取样,对形成的絮团物质进行显微观察,同时对各组水体中浮游生物进行定性和定量分析。结果表明,本试验条件下,处理I组和处理II组在第15天左右形成成熟生物絮团,生物絮团形成前期(试验开始至第15天),生物絮团组(处理I组和处理II组)水体中浮游植物丰度显著高于处理III组和对照组,而絮团形成后期(第15~40天),生物絮团组水体中蓝藻门的微囊藻属(Microcystis)、鞘丝藻属(Lyngbya)和绿藻门的扁藻属(Platymonas)、盘藻属(Gonium)和团藻属(Volvax)的丰度显著低于处理III组和对照组,表明生物絮团的形成前期对浮游植物有明显促作用,生物絮团形成后期对蓝藻门中的微囊藻属、鞘丝藻属和绿藻门的扁藻属、盘藻属和团藻属有明显抑制效果;生物絮团形成后期,生物絮团组水体中轮虫、枝角类和桡足类浮游动物丰度显著高于处理对照III组和对照组,表明生物絮团对轮虫、枝角类和桡足类有明显促进作用。  相似文献   

10.
分别向凡纳滨对虾(Litopenaeus vannamei)养殖水体中添加芽孢杆菌(处理A)、芽孢杆菌+粉碎甘蔗渣(处理B)、芽孢杆菌+粉碎-蒸煮甘蔗渣(处理c),检测养殖环境中的氨氮、亚硝态氮和硝态氮含量、水体中总菌数、水体中絮团含量和对虾生长指标,评估添加甘蔗渣和芽孢杆菌对对虾生长及养殖环境的影响。60天的养殖结果表明,养殖前期处理组B、处理组c的氨氮(TAN)浓度显著低于处理组A(P〈0.05);甘蔗渣和芽孢杆菌的添加能够提高水体中生物絮团含量,养殖10天以后,处理组B和处理组C的生物絮团含量分别维持在6-3~20 ml/L、8.3~30 ml/L,各时期都显著高于处理组A(维持在2.7~8.3 ml/L)(P〈0.05);处理组B、处理组c收获时对虾平均体重分别为8.56±0.21 g、8.84±0.26 g,显著大于处理组A(7.66±0.40 g)(P〈0.05)。  相似文献   

11.
从对虾养殖池中分离到1株细菌(编号2013042402,简称菌株02),分别用16S rDNA序列比对法和细菌全细胞脂肪酸气相色谱法对该菌进行鉴定.结果显示,菌株02为芽孢杆菌(Bacillus sp.).为探讨该芽孢杆菌在生物絮团对虾养殖中的使用效果,实验分别设置加菌加糖组(菌株02的量为2.0× 104 CFU/ml,蔗糖量为饵料的70%)、加菌组、加糖组(生物絮团组)及空白对照组,研究了菌株02对养殖水质(温度、盐度、溶氧、pH、氨氮及亚硝酸氮)、对虾存活率及水体中主要菌群组成等指标的影响.结果显示,加菌加糖组能显著降低养殖水体中的氨氮和亚硝酸氮浓度,提高对虾存活率.生物絮团对虾养殖系统中添加菌株02,能够改善菌群结构,抑制弧菌生长.研究结果可为生物絮团对虾养殖中定向培养有益微生物提供技术支持.  相似文献   

12.
以红糖、糖蜜、豆粕作为碳源研究三种碳源培养的生物絮团对南美白对虾养殖的影响,结果表明:生物絮团含量:红糖组>糖蜜组>豆粕组,三种碳源培养的生物絮团能够有效降低水体中的氨氮和亚硝酸盐含量,对pH值影响不大,三个试验组的成活率均高于对照组,其中红糖组>糖蜜组>豆粕组。综上所述:红糖、糖蜜和豆粕作为碳源的生物絮团养殖均能降低水体中的氨氮和亚硝酸盐,提高南美白对虾的成活率,同时生物絮团养殖可以降低换水量,减少养殖废水排放,生物需团技术在今后的南美白对虾及其他经济鱼类养殖过程中值得推广。  相似文献   

13.
为研究生物絮团对福瑞鲤2号苗种生长及养殖系统水质的影响,采用对比试验法,设试验组和对照组,每组设3个重复,试验组以甜菜糖蜜为碳源,每周添加一次。各组放养鱼类品种、数量、规格完全相同。试验历时60 d,每7 d测量一次鱼类生长指标,试验一周后每周监测一次氨氮、亚硝酸盐,溶解氧每天监测一次。结果表明,试验组鱼类成活率、出池个体平均重、增重率、特定生长率均显著高于对照组(P0.05),饲料系数显著低于对照组(P0.05)。试验组碳源添加一周后,氨氮低于对照组,三周后显著低于对照组(P0.05);亚硝酸盐自添加碳源后,试验组一直低于对照组,前三周无显著差异(P0.05),三周后存在显著性差异(P0.05)。饲料系数试验组显著低于对照组(P0.05)。添加碳源能显著降低养殖水体中氨氮、亚硝酸盐等有毒有害物质,促进养殖鱼类生长和提高饲料利用率。  相似文献   

14.
本研究尝试将生物絮团技术应用到凡纳滨对虾试验性封闭养殖系统中,筛选生物絮团养殖所需的适宜碳源及其添加量,在此基础上研究生物絮团养殖系统中凡纳滨对虾的适宜养殖密度。结果表明,在养殖密度为150和300尾/m2的凡纳滨对虾养殖系统中,每天按照饲料(蛋白含量42%)投喂量的77%添加蔗糖,生物絮团4d即可形成,在84d的养殖期内,养殖水体的氨氮和亚硝酸氮浓度均维持在较低水平,对虾成活率在80%以上,取得较好的养殖收获。  相似文献   

15.
为研究芽孢杆菌对草鱼养殖水质的影响,选取体重约45g的草鱼210尾,随机分为2组,每组设3个平行重复.对照组在水中不添加任何菌,处理组每隔7d分别向水中按照1×108 cfu/m3添加芽孢杆菌菌粉,二组均饲喂基础日粮.草鱼养殖水体水质测定结果表明:与对照组相比,第28天处理组氨氮含量比对照组下降29.17%(P<0.05).亚硝酸盐氮含量无显著性差异且在0.39 mg/L以下.第14天时,处理组硝酸盐氮含量比对照组降低60.26%( P<0.01),在第21天和第28天分别比对照组提高26.98%(P<0.05)和67.85%(P<0.01).处理组的总无机氮含量在21d内无显著差异,第28天时下降了15.39%(P>0.05).养殖水体pH值维持在6.8~7.6,各组之间无显著差异.养殖水体中添加芽孢杆菌可降低氨氮含量,改善养殖水体水质.  相似文献   

16.
为探讨饲料中添加不同含量枯草芽孢杆菌对拟穴青蟹(Scylla paramamosain)幼蟹生长、消化酶活性及体成分的影响,以初始体质量为(25.74±0.51)mg的拟穴青蟹Ⅰ期仔蟹为试验对象,在基础饲料中分别添加0、0.1%和0.5%的枯草芽孢杆菌制成3种试验饲料,饲喂幼蟹3周。试验结果:添加枯草芽孢杆菌的组,拟穴青蟹幼蟹的终末平均体质量、体质量增长率、特定生长率和蛋白酶活性显著高于对照组(P<0.05),但两个不同添加量试验组间的差异不显著(P>0.05);添加枯草芽孢杆菌显著增强了幼蟹蛋白酶和淀粉酶的活性(P<0.05),对幼蟹的水分、粗蛋白和灰分含量均没有显著影响(P>0.05);添加0.5%枯草芽孢杆菌的试验组,幼蟹的脂肪含量显著高于其它试验组(P<0.05)。结果表明,在本试验条件下,饲料中添加枯草芽孢杆菌对拟穴青蟹幼蟹的生长有显著促进作用,对蛋白酶活性、淀粉酶活性和体粗脂肪含量也有显著影响,添加0.1%~0.5%的枯草芽孢杆菌对拟穴青蟹幼蟹有较好的促生长效果。  相似文献   

17.
对一株有脱氮作用的巨大芽孢杆菌(Bacillus megaterium)进行简易发酵,以对虾饲料及赤砂糖为培养基,通过正交实验及发酵条件优化,在对虾饲料3 g/L、赤砂糖6g/L、接种量1×108 CFU/ml、发酵温度31℃、装液量40%条件下,发酵24 h可获得活菌数为1.16× 1010 CFU/ml的发酵产物.使用发酵得到的巨大芽孢杆菌进行凡纳滨对虾(Litopenaeus vannamei)生物絮团养殖实验.结果显示,添加芽孢杆菌和赤砂糖的增强絮团组的絮团形成速度较添加赤砂糖的絮团组及传统养殖的对照组明显提升(P<0.05),整体上增强絮团组的亚硝酸氮水平与絮团组和对照组差异显著(P<0.05).养殖结束时,添加巨大芽孢杆菌组的对虾体长、体重水平均显著高于另2组.本研究建立了一种简单可行的功能益生菌发酵方式,并验证添加功能益生菌可提高生物絮团技术在对虾养殖中的效果.  相似文献   

18.
对一株有脱氮作用的巨大芽孢杆菌(Bacillus megaterium)进行简易发酵,以对虾饲料及赤砂糖为培养基,通过正交实验及发酵条件优化,在对虾饲料3 g/L、赤砂糖6 g/L、接种量1×10~8 CFU/ml、发酵温度31℃、装液量40%条件下,发酵24 h可获得活菌数为1.16×10~(10) CFU/ml的发酵产物。使用发酵得到的巨大芽孢杆菌进行凡纳滨对虾(Litopenaeus vannamei)生物絮团养殖实验。结果显示,添加芽孢杆菌和赤砂糖的增强絮团组的絮团形成速度较添加赤砂糖的絮团组及传统养殖的对照组明显提升(P0.05),整体上增强絮团组的亚硝酸氮水平与絮团组和对照组差异显著(P0.05)。养殖结束时,添加巨大芽孢杆菌组的对虾体长、体重水平均显著高于另2组。本研究建立了一种简单可行的功能益生菌发酵方式,并验证添加功能益生菌可提高生物絮团技术在对虾养殖中的效果。  相似文献   

19.
生物絮团对锦鲤生长及养殖水体水质的影响   总被引:1,自引:0,他引:1  
为了研究生物絮团对观赏鱼类生长影响及对养殖水质净化效果,通过设置对照组和生物絮团组(碳氮比为20:1)进行了锦鲤养殖效果对比试验。30d的试验结果显示,生物絮团组锦鲤的特定生长率相比对照组显著提高(P0.05),饲料系数相比对照组显著降低(P0.05),成活率两者之间无显著差异(P0.05)。在池塘水质净化方面,生物絮团组的亚硝酸盐氮浓度和氨氮含量变化趋势一致,呈现先升高后逐渐下降的趋势,生物絮团系统达到稳定后,生物絮团组的二态氮含量显著低于对照组(P0.05)。研究表明,生物絮团技术应用在锦鲤养殖中能有效净化池塘水质,同时可促进锦鲤生长。生物絮团通过实现饲料中蛋白质的二次有效利用,提高了饲料利用效率,降低了养殖成本、减少了水体污染。  相似文献   

20.
为了研究生物絮团系统(BFT)中以3-羟基丁酸-co-3-羟基戊酸共聚物(PHBV)为碳源对斑点叉尾鮰(Ictalurus punctatus)生长、养殖水质及对硝化过程反应速率及硝化酶的影响,设置不添加PHBV组(CL组)和挂袋300 g PHBV颗粒组(PHBV组)进行29 d的养殖实验,每4 d检测水质、絮团指标。实验结束检测鱼体生长指标,取实验末养殖水进行10 mg/L NH~+_4降解连续监测,取特征点总氨氮(TAN)最高(A),亚硝酸盐(NO~-_2-N)最高(B_1/B_2)及硝酸盐(NO~-_3-N)最高(C)时的絮团样检测氨单加氧酶(AMO)、羟氨氧化还原酶(HAO)及亚硝酸氧化还原酶(NOR)含量。结果显示:两组的成活率、增重率、特定增长率以及饲料系数均无显著差异,PHBV对斑点叉尾鮰鱼苗生长促进不显著。整个养殖过程中两组TAN、NO~-_2-N均处于安全范围,硝酸盐、磷酸盐、总氮、总磷及总固体悬浮物与絮团体积均呈现不断积累的趋势,且两组将10 mg/L NH~+_4转化为NO~-_3-N均需约28 h,表明两组生物絮团性能良好。硝化酶结果显示,PHBV组的AMO、HAO及NOR含量均显著大于CL组,但其硝化速率并未显著提高。两组游离菌的AMO、HAO、NOR含量均显著低于固着菌,且CL组游离菌中AMO、HAO及NOR含量与PHBV组差异不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号