首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为探讨漏芦对泌乳动物乳腺酪蛋白合成的调节机制,利用细胞活力分析仪检测漏芦乙醇提取物(25、50、100、200、400、600、800μg/mL)对奶山羊乳腺上皮细胞活力和增殖能力的影响,并选择不抑制细胞生长增殖的乙醇提取物剂量,研究其对奶山羊乳腺上皮细胞酪蛋白合成相关基因mRNA表达的影响;采用实时荧光定量PCR(qRT-PCR)技术检测乳腺上皮细胞αs1-酪蛋白(CSN1S1)、αs2-酪蛋白(CSN1S2)、β-酪蛋白(CSN2)、κ-酪蛋白(CSN3)、信号转导与转录激活因子5(STAT5)、蛋白质酪氨酸激酶2(JAK2)、哺乳动物雷帕霉素蛋白(mTOR)、真核细胞翻译启动因子4E结合蛋白1(4EBP1)及核糖体蛋白S6激酶1(S6K1)基因的mRNA表达水平。结果表明,较高剂量(200~800μg/mL)的漏芦乙醇提取物明显抑制了奶山羊乳腺上皮细胞的活力和增殖能力(P0.05),故后续试验添加25、50、100μg/mL的漏芦乙醇提取物处理乳腺上皮细胞;漏芦乙醇提取物可明显上调细胞酪蛋白基因CSN1S1、CSN1S2、CSN2、CSN3及酪蛋白合成相关基因STAT5、JAK2、mTOR、S6K1的mRNA表达水平(P0.05),但显著下调了4EBP1基因的mRNA表达水平(P0.05)。由此可见,漏芦乙醇提取物能通过调节奶山羊乳腺上皮细胞酪蛋白合成相关基因的表达,进而促进乳腺细胞酪蛋白的合成。  相似文献   

2.
【目的】为获得高启动效率的乳腺特异启动子,对荷斯坦奶牛、娟姗牛和奶水牛的β-酪蛋白基因启动子进行比较研究。【方法】对Genbank中所收录的荷斯坦奶牛、娟姗牛和水牛β-酪蛋白基因启动子序列进行比对分析,按照保守序列分别设计启动子区和3′端ploy A序列引物,同时设计人IFNα-2b基因和EGFP-Neo筛选序列引物并引入预先设计的酶切位点以方便载体构建。采集静脉血液,提取基因组DNA。PCR克隆β-酪蛋白基因启动子区和3′端ploy A区,同时以实验室保存质粒为模板克隆人IFNα-2b基因和EGFP-Neo筛选序列。测序正确后,将各片段按设计顺序依次插入p MD18-T骨架中,构建成p HSTBCNp-IFN,p JSBCNp-IFN和p SNBCNp-IFN乳腺特异表达载体。将各载体转染Bcap-37细胞,经G418筛选出稳定整合的转基因细胞系。用胰岛素(1 mg·L-1),转铁蛋白因子(1 mg·L-1),氢化可的松(1 mg·L-1)和PRL(250IU·L-1)联合对转基因细胞系进行诱导,然后用PCR、Western blotting、QRT-PCR技术和ELISA方法分别在m RNA水平和蛋白质水平检测IFNα-2b的表达。【结果】PCR后获得了荷斯坦奶牛、娟姗牛和水牛β-酪蛋白基因启动子区,长度分别为5 219、5 244和5 216 bp,其中包括了第一外显子,第一内含子和部分第二外显子,部分第二外显子的51个碱基编码17个氨基酸的信号肽序列。克隆了1 166 bp的ploy A区序列。最终将构建的3个乳腺特异表达载体转染Bcap-37细胞并经过G418筛选后,获得了3个转基因细胞系。经激素诱导后,PCR、Western blotting、QRT-PCR和ELISA检测发现3个转基因细胞系都表达了IFNα-2b基因,并且发现娟姗牛β-酪蛋白基因启动子在调控IFNα-2b基因的表达上效率较高,在m RNA水平和蛋白质水平上显著高于其他两个启动子(P0.05)。【结论】娟姗牛β-酪蛋白基因启动子在调控外源基因表达上具有较高的效率,是具有应用前景的乳腺特异性启动子。所构建的表达载体为IFNα-2b转基因动物乳腺生物反应器的制备奠定基础。  相似文献   

3.
为了提高转基因动物乳腺特异性表达水平,构建了两种不同启动子的乳腺特异性表达载体,以比较其乳腺特异性表达效果.应用山羊β-酪蛋白或牛αs1-酪蛋白调控序列、鸡β-球蛋白隔离元件、巨细胞病毒(CMV) 基因表达涮控元件构建了,乳腺特异性表达复合启动/增强子(Pcmv) ,以单一的酪蛋白启动子作为对照,与人乳铁蛋白cDNA组成乳腺特异性表达载体,并制备了转基因小鼠.经ELISA检测,复合启动/增强子构件指导人乳铁蛋白cDNA在原代转基因小鼠乳腺中重组人乳铁蛋白(rhLF) 表达水平(2.0~8.1 g·L-1) 明显高于单一酪蛋白启动子构件(0~12 mg·L-1) ,而在所有转基因小鼠的血清和唾液中未检测到rhLF.结果提示:酪蛋白-Pemv复合启动/增强子不仅可提高转基因小鼠乳腺特异性表达水平,而且具有良好的乳腺表达特异性.  相似文献   

4.
β-酪蛋白 (β-Casein)是哺乳动物乳汁中主要的蛋白质 ,其基因 5′侧翼调控区常作为乳腺定位表达的调控序列。表达载体 p SVL-βr-PA和 p SVL-βb-PA分别含有 1 .0 kb的大鼠β-Casein和 0 .6kg的牛β-Casein基因调控序列及 t-PAc DNA。采用基因直接注射方法将两种表达载体分别注入家兔乳腺中。溶圈试验结果显示 ,两种表达载体均能在兔乳腺细胞中得到表达 ,表达水平没有明显差异  相似文献   

5.
β-酪蛋白(β-Casein)是哺乳动物乳汁中主要的蛋白质,其基因5'侧翼调控区常作为乳腺定位表达的调控序列.表达载体pSVL-βr-PA和pSVL-βb-PA分别含有1.0kb的大鼠β-Casein和0.6kg的牛β-Casein基因调控序列及t-PAcDNA.采用基因直接注射方法将两种表达载体分别注入家兔乳腺中.溶圈试验结果显示,两种表达载体均能在兔乳腺细胞中得到表达,表达水平没有明显差异.  相似文献   

6.
乳清酸蛋白 (WAP)和 β -酪蛋白 (β -Casein)是哺乳动物乳汁中的主要蛋白质 ,其基因 5′侧翼区常作为乳腺定位表达的调控序列。表达载体pSVL -WAP -tPA和pSVL - βb -tPA分别含 1.1kb的大鼠WAP启动子和 0 .6kb的牛β Casein启动子序列及t-PAcDNA。采用基因直接注射方法将 2种表达载体分别注入家兔乳腺中。溶圈试验结果显示 ,两种表达载体均能在兔乳腺细胞中得到表达 ,且以分娩后第 4天的乳汁中表达水平最高 ,分别为 45 0ng·mL-1和390ng·mL-1。为进一步研究t-PA基因乳腺定位表达调控和建立t-PA乳腺生物反应器奠定了基础。  相似文献   

7.
为了构建α-乳清蛋白乳腺特异性表达载体及提供山羊乳腺生物反应器α-乳清蛋白核移植供体细胞,提取乳腺组织中的总RNA,采用RT-PCR技术获得α-乳清蛋白基因cDNA,测序酶切后连接乳腺特异性表达载体pBCⅠ-Neo,并对重组载体进行酶切测序鉴定;取重组正确的载体酶切线性化后利用脂质体介导转染至山羊胎儿成纤维细胞,通过G418筛选培养转染了α-乳清蛋白乳腺特异性表达载体的山羊胎儿成纤维细胞。结果显示:经过RT-PCR特异性扩增克隆出α-乳清蛋白基因;克隆的基因碱基组成序列经测序与预期完全一致,α-乳清蛋白基因片段正向插入乳腺特异性表达载体;重组载体在山羊胎儿成纤维细胞中稳定转染,转入α-乳清蛋白乳腺特异性表达载体的山羊胎儿成纤维细胞生长迅速,仍保持原有的细胞生长形态。成功构建了α-乳清蛋白乳腺特异性表达载体,获得稳定转染的山羊胎儿成纤维细胞可用于核移植。  相似文献   

8.
【目的】研究酪蛋白中αs2酪蛋白(CSN1S2)基因和K酪蛋白(CSN3)基因在西农萨能奶山羊乳腺组织中的表达量及其与产奶性状的关系。【方法】根据山羊CSN1S2和CSN3的mRNA序列(CSN1S2:AJ289716,CSN3:EF564258)设计实时定量特异性引物,采用实时荧光定量PCR法,对年均产奶量不同的3组西农萨能奶山羊进行mRNA转录水平上的相对定量分析,并测定乳脂和乳蛋白的含量,同时对扩增出的mRNA片段进行克隆测序。【结果】CSN1S2基因在第1组15只西农萨能奶山羊(年均产奶量为(1 100.00±15.00)kg)乳腺组织中的相对表达量是第2组15只奶山羊(年均产奶量为(600.00±12.00)kg)的2.47倍,二者差异极显著(P0.01);CSN3基因在第1组西农萨能奶山羊乳腺组织中的表达量是第2组的3.10倍,二者差异极显著(P0.01);测序后进行序列比对发现,目的mRNA片段与山羊CSN1S2和CSN3基因的同源性均为100%;CSN1S2基因在西农萨能奶山羊乳腺组织中的表达量与乳汁中蛋白质含量相关性不显著,与脂肪含量呈显著负相关;CSN3基因的表达量与乳汁中蛋白质含量呈显著正相关,与脂肪含量相关性不显著。【结论】CSN1S2基因和CSN3基因在西农萨能奶山羊乳腺中的表达量对乳蛋白和产奶量有显著影响(P0.05),可作为西农萨能奶山羊产奶性状选育的候选基因。  相似文献   

9.
动物乳腺特异表达载体的构建及其表达特性研究   总被引:6,自引:0,他引:6  
为了研制动物乳腺生物反应器,用中国奶山羊β-乳球蛋白基因的5′、3′-侧翼区和β-酪蛋白基因的第1内含子构建动物乳腺特异表达载体p205C3.细胞表达试验结果显示,p205C3载体能够指导lacZ基因在SV40 T基因转化的山羊乳腺上皮细胞中表达,不能指导该基因在COS-1细胞和山羊成纤维细胞中表达.将人激肽释放酶(hKLK1) cDNA克隆入p205C3载体,用获得的重组载体p205C3KLK1注射哺乳期小鼠,然后取其心、肝、脾、肺、肾、脑、肌肉、胰腺和乳汁,酶活性测定结果显示,乳汁中的酶活性高达255.65 U·mL-1,其他组织中的酶活性与正常小鼠无差异.结果表明p205C3载体不仅能有效地指导外源基因在山羊乳腺细胞和小鼠乳腺中表达,而且表达具有较好的组织特异性,可以用于动物乳腺生物反应器的研制.  相似文献   

10.
利用高保真PCR技术扩增了黑白花奶牛β-酪蛋白基因(CSN2)5'和3'调控成分,纯化PCR产物与pMD19-TVector亚克隆后酶切鉴定和测序.结果表明:克隆片断与奶牛β-酪蛋白基因相应区域同源性分别为97.0%和99.0%,并且包含有大部分的CSN2表达核心调控序列和多个转录、翻译因子的结合位点,获得了黑白花奶牛β-酪蛋白基因调控区的克隆.为构建乳腺特异表达载体,指导外源基因在转基因动物乳腺内高效表达奠定了基础.  相似文献   

11.
Three lactoproteins (α-Sl-casein, β-lactoglobulin, and β-casein) promotors were cloned, sequenced and compared relative luciferase expression. The results showed that the promotor activity of bovine α-...  相似文献   

12.
通过对pBC1中的乳腺特异表达启动子成分进行分析,鉴定了位于β酪蛋白启动子上游两个EcoRⅠ位点(-89~-94和-120~-125)之间的缺失片段,31bp的缺失使得该载体中的一个乳控盒元件(-112~-141)和一个乳腺因子识别序列(-92~-102)遭到破坏,并使得位于TATA框上游的所有启动子成分发生了位置改变。通过与山羊β酪蛋白启动子序列进行比较,设计并合成了缺失片段,经一系列的酶切和连接处理,使得该缺失得到了修复,修复后的载体具有所有乳蛋白表达需要的启动子调控原件。本试验结果为利用修复后的乳腺特异高效表达载体进行乳腺生物反应器的研究奠定了分子生物学基础。  相似文献   

13.
以α-半乳糖苷酶基因为筛选标记,构建GAL1诱导型启动子介导的酿酒酵母表达载体YGM-α-gal质粒,将枯草芽孢杆菌的β-1,3-1,4-葡聚糖酶基因克隆到此载体中,构建质粒YGMPA-α-gal,转化宿主酵母后,实现β-1,3-1,4-葡聚糖酶在酿酒酵母中的分泌表达.结果表明:在2%半乳糖诱导下,摇瓶发酵24h后分泌表达的β-葡聚糖酶活性达到411.9U爛mL-1,而在培养60h后,发酵液中α-半乳糖苷酶活性可达64.2U爛mL-1.说明α-半乳糖苷酶基因可用作酿酒酵母表达载体转化的有效筛选标记,为食品级酿酒酵母表达系统的构建提供了新选择.  相似文献   

14.
15.
16.
[目的]构建紫花苜蓿MsCOL1基因植物的表达载体。[方法]根据紫花苜蓿CONSTANS类似基因MsCOL1基因(登录号:DQ661682)序列,设计含有酶切位点的一对特异性引物,以紫花苜蓿cDNA为模板,获得MsCOL1基因完整编码区DNA序列,并将目的片段插入表达载体pBI121的相应位置,构建植物表达载体35S∷MsCOL1,再利用农杆菌介导方法将35S∷MsCOL1转化到拟南芥中。[结果]分析测序结果显示,所获得克隆为插入目的片段的阳性克隆。经RT-PCR检测,证明转基因植株中MsCOL1基因能够顺利表达。[结论]该方法成功构建植物表达载体35S∷MsCOL1,并获得了转基因拟南芥植株。  相似文献   

17.
为克隆滩羊肝脏α-生育酚转移蛋白(α-TTP)CDS区基因并构建其原核表达载体,通过Trizol法提取滩羊肝脏组织总RNA,将其反转录为cDNA后利用人工合成和PCR扩增相结合的方法得到α-TTP CDS区基因,并将其克隆至原核表达载体pET28a,命名为pET28a-TTPA。结果表明:扩增了滩羊肝脏α-TTP CDS区基因,同已公布的绵羊α-TTP序列同源性达99.76%,并且将其成功克隆至原核表达载体pET28a。结果为后续α-TTP基因原核表达及其抗体的制备奠定了基础。  相似文献   

18.
 【目的】验证高羊茅叶绿体表达载体在高羊茅叶绿体中的瞬时表达情况,为今后在高羊茅叶绿体中稳定表达该载体,获得耐旱高羊茅的叶绿体转基因株系奠定基础。【方法】首先从高羊茅草叶绿体基因组中克隆16S/trnI-trnA/23S片段,作为定点整合同源片段。然后将耐旱相关基因酵母海藻糖合酶基因tps1与水稻叶绿体16S rRNA基因的强启动子Prrn、烟草叶绿体基因psbA的终止子构建表达盒(Prrn-tps1-TpsbA-ter),连同草丁膦抗性基因bar表达盒、卡那霉素抗性基因nptII和绿色荧光蛋白基因gfp构建的融和基因表达盒一起克隆到定点整合同源片段之间,构建高羊茅叶绿体的稳定表达载体gTKGB。通过基因枪轰击法将gTKGB转化到高羊茅幼嫩叶片中,用激光共聚焦扫描显微镜对GFP的表达情况进行检测分析。【结果】克隆的高羊茅叶绿体基因16S-trnI-trnA-23S在NCBI登录号为:DQ490947-DQ490950。构建的叶绿体表达载体gTKGB转化高羊茅幼嫩叶片,在叶绿体中有很好的GFP表达。【结论】高羊茅叶绿体表达载体gTKGB可用于高羊茅叶绿体转化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号