首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将构建好的植物过表达载体pCAMBIA3301-Gmr937和RNAi表达载体pCAMBIA3301-RNAi-Gmr937,通过农杆菌介导的叶盘法将植物表达载体转入烟草。经PCR检测得到T1代过表达载体阳性植株13株,RANi表达阳性植株11株。对阳性植株进行荧光定量PCR,测定目的基因的表达量,结果表明Gmr937基因在转化烟草根、叶片中表达量最高,是未转化植株12倍,在茎中表达量最低,是对照7倍;在转干扰表达载体植株苗期根、叶中表达量是对照0.7倍,在茎中的表达量是对照0.85倍。以CaMV35s启动子为探针进行Southern杂交检测,结果表明转化的目标基因以单拷贝整合到受体烟草基因组中。测量适宜条件下培育的转基因烟草侧根总长度,结果表明超表达转基因植株的侧根平均总长度为117cm,比未转化烟草平均增加了8cm;RNAi干扰转基因植株侧根总长度平均为80cm,比对照组减少了11cm,说明Gmr937基因对烟草侧根的发育有促进作用。对干旱处理7d后的转基因烟草的抗旱生理生化指标进行测定,结果表明Gmr937基因在烟草中超表达提高了烟草植株的耐旱性。  相似文献   

2.
大豆GmbZIP16的抗旱功能验证及分析   总被引:1,自引:0,他引:1  
【目的】通过分析干旱条件下大豆的转录组数据,筛选获得大豆锌指蛋白GmbZIP16,对其进行功能验证,确定GmbZIP16参与大豆抵抗干旱的分子机理。【方法】大豆干旱转录组数据分析得到上调倍数较高的锌指蛋白GmbZIP16,以大豆cDNA为模板克隆获得GmbZIP16。并通过In-Fusion连接酶技术,构建pCAMBIA1302- GmbZIP16和pCAMBIA3301-GmbZIP16表达载体。通过液氮冷冻法将重组载体pCAMBIA1302- GmbZIP16和pCAMBIA3301-GmbZIP16分别转入农杆菌GV3101和大豆发根农杆菌K599的感受态细胞中,通过农杆菌侵染拟南芥花序以及大豆子叶节技术,产生过表达拟南芥植株以及过表达大豆毛状根复合体植株。通过半定量RT-PCR和qRT-PCR分析,确定GmbZIP16在转基因拟南芥和大豆毛状根中能够超表达。分别将正常条件下生长2周龄的转基因和野生型拟南芥植株转移至含有不同PEG浓度(6% PEG和8% PEG)的MS0培养基上继续培养7 d,观察转基因拟南芥和对照野生型拟南芥之间的生物量差异;利用qRT-PCR分析转基因拟南芥和野生型拟南芥植物体中胁迫相关的基因表达情况。将生长良好的转GmbZIP16大豆毛状根复合体施加25% PEG处理1周后,分别采取转GmbZIP16大豆毛状根复合体和转空载体大豆毛状根复合体的叶片,用酶标仪测定植株的脯氨酸、丙二醛和叶绿素的含量。【结果】通过PCR技术扩增得到正确的GmbZIP16序列,通过农杆菌转化技术得到2个稳定过表达的转GmbZIP16拟南芥株系。通过对转基因拟南芥的表型鉴定发现转基因拟南芥在干旱处理下的生物量(鲜重和根长)及存活率比野生型显著提高。在过表达GmbZIP16拟南芥植株中,一些与胁迫相关的基因的表达要高于在野生型,如RD29B、DREB2A和P5CS。转GmbZIP16大豆毛状根复合体植株在25% PEG处理1周后,大豆毛状根复合体叶片中叶绿素和脯氨酸的含量要显著高于转空载体大豆毛状根复合体叶片中叶绿素和脯氨酸的含量,而转GmbZIP16大豆毛状根复合体叶片中丙二醛的含量显著低于转空载体大豆毛状根复合体叶片中丙二醛的含量。【结论】在拟南芥中过表达大豆GmbZIP16提高了转基因拟南芥的抗旱性。过表达GmbZIP16可以提高转基因大豆毛状根复合体对干旱的抗性。GmbZIP16提高植物的抗旱性主要是通过影响与抗逆相关基因的表达来实现的。  相似文献   

3.
【目的】从野生型拟南芥中克隆抗寒基因ICE1,通过农杆菌介导法将ICE1基因转到烟草中,对其功能进行研究。【方法】以三叶一心期拟南芥幼苗为材料,提取其总RNA,通过RT-PCR扩增得到ICE1基因的完整开放阅读框序列;构建以抗除草剂Bar基因为筛选标记的植物表达载体pCAMBIA3301-ICE1,通过农杆菌介导法转入到烟草中,对阳性植株进行PCR检测和生理生化指标测定,并对ICE1基因在转基因烟草植株中的表达特征进行分析。【结果】成功克隆了拟南芥抗寒基因ICE1,其完整开放阅读框长1 485bp。系统进化树表明,拟南芥ICE1基因与其他物种的ICE1基因差别较大。用农杆菌介导法得到4株阳性烟草植株,Southern blotting检测证明,ICE1基因已经以单拷贝的形式整合到烟草基因组中。实时荧光定量PCR检测表明,ICE1基因在转基因烟草植株的根、茎和叶片中均有表达,且在叶片中的相对表达量最高。4℃低温环境下,与未转化植株相比,转ICE1基因烟草植株叶片的相对电导率降低了12.00%~17.65%,脯氨酸含量增加了13.28%~24.10%,丙二醛含量减少了7.09%~14.52%,过氧化物酶活性提高了9.39%~22.54%。【结论】克隆获得了拟南芥ICE1基因的完整开放阅读框序列,在烟草中转入ICE1基因可提高其耐寒性。  相似文献   

4.
【目的】克隆大豆查尔酮还原酶1(CHR1)基因,以构建的过表达载体pCAMBIA3301-CHR1转化大豆,获得含有CHR1基因的阳性植株,为研究该基因的功能奠定基础。【方法】以大豆基因组DNA为模板,通过PCR扩增克隆CHR1基因,构建植物过表达载体pCAMBIA3301-CHR1,对其进行PCR及双酶切鉴定。采用农杆菌介导法将该载体转入大豆"吉农28"中,对转基因植株进行PCR、Southern杂交检测,对CHR1基因mRNA相对表达量进行荧光定量PCR检测。【结果】克隆得到的CHR1基因大小为1 100bp。成功构建了植物过表达载体pCAMBIA3301-CHR1,将其转化大豆后,通过PCR检测获得T1代转基因大豆植株12株;Southern杂交检测结果显示,CHR1基因以单拷贝形式整合入大豆基因组中;荧光定量PCR检测结果显示,转基因植株的CHR1mRNA相对表达量高于非转基因大豆植株。【结论】成功构建了过表达载体pCAMBIA3301-CHR1,并获得了CHR1基因表达量高的转基因大豆。  相似文献   

5.
atp9基因是烟草的雄性不育相关基因。为研究atp9基因的功能及其在烟草雄性不育形成中的作用,根据atp9基因全长序列,设计特异性引物,扩增正、反义干扰片段,将长度为239bp的atp9基因的正、反向干扰片段分别连接到linker片段的两侧,最后插入到植物表达载体pCAMBIA1301中,成功地构建了atp9基因的RNAi表达载体。利用农杆菌介导法将其转化烟草保持系品种中烟90,结果证明atp9基因的RNAi表达载体已整合到中烟90基因组中。经抗性筛选以及分子检测最终获得41株转pCAMBIA1301-atp9-RNAi烟草植株,其中阳性烟草有20株,转化率为48.8%。研究结果为下一步验证atp9基因的功能及其在烟草雄性不育形成中的作用奠定了基础。  相似文献   

6.
【目的】构建柑橘衰退病毒(Citrus tristeza virus,CTV)含p23的RNAi载体,以获得具有抗性的柑橘转基因植株。【方法】基于转化病毒基因介导抗性,根据NCBI公布的CTV基因组序列,查找p23保守序列,设计并克隆两条不同长度的片段。对两条片段和植物表达载体p BI 121进行双酶切和连接来构建RNAi载体。初步预测所构建的载体发生RNAi抗病毒的可行性。利用农杆菌介导的瞬时表达技术将含RNAi载体的农杆菌注射入CTV指示植物墨西哥莱蒙的叶片,利用GUS组织化学染色法观察叶片中载体发生瞬时表达的情况。发生瞬时表达的叶片接种CTV T36基因型,利用酶联免疫反应(ELISA)检测病毒含量。同时,提取叶片的RNA并反转录为c DNA,利用实时荧光定量PCR(q-PCR)检测CTV p20,通过该基因的表达量反映叶片中的病毒含量。通过农杆菌介导的遗传转化将RNAi载体转入大红甜橙实生苗上胚轴节间茎段,抗生素筛选得到的芽嫁接至枳橙实生试管苗。提取大红甜橙叶片的DNA,通过PCR扩增确定其是否为转基因阳性;目的基因检测为阳性的植株二次嫁接至温室保存的酸橙实生苗;根据插入的p23基因序列设计q-PCR引物,检测转基因植株中p23的表达情况。取CTV T36基因型寄主的带皮芽,用腹接法接种大红甜橙转基因植株。取接种后新萌发枝梢上的叶片,用检测瞬时表达叶片同样的方法分析植株的抗病性。对于第1次接种后未检测出病毒感染的植株,进行第2次接种并检测分析。【结果】克隆得到CTV p23 513 bp的长片段和291 bp的短片段,与载体p BI121连接后成功构建含发夹结构的来自病原且能靶向目的基因的RNAi载体,命名为p23-RNAi。注射p23-RNAi的墨西哥莱蒙叶片经GUS染色后能够产生蓝色斑点,表明农杆菌p23-RNAi可以在叶片中发生瞬时表达;接种CTV后第15和30天,瞬时表达p23-RNAi的墨西哥莱蒙叶片ELISA检测结果均为阴性,同时q-PCR检测结果显示其CTV p20的积累水平和增加速度明显低于对照植株,表明瞬时表达的p23-RNAi在一定时间内可以对CTV的侵染产生抑制。p23-RNAi经农杆菌介导遗传转化大红甜橙获得抗性芽,通过普通PCR的扩增结果证明得到7个转基因植株;q-PCR检测结果进一步表明7个转基因植株间p23的含量呈现一定差异,植株E的含量最高,其次是C、F、H、A、B和G。接种CTV后,p20的表达量在7个转基因植株间也表现出一定差异,表达量最高的是植株A,其次是G、F、E、B、H、C,且与对照植株相比,呈现不同程度的抗病性。转基因植株对病毒的抗性与外源基因的表达水平没有相关性,外源基因表达水平最高的植株E并没有表现强的CTV抗性。经过两次病毒接种,转基因植株C在接种后具有完全抗性。【结论】p23-RNAi载体能引起植物抗柑橘衰退病毒;瞬时表达技术可快速鉴定RNAi载体的抗病性,有利于筛选高效率的RNAi载体。  相似文献   

7.
【目的】克隆3个紫花苜蓿乙烯应答因子基因,分析其在不同条件下的表达特性;构建植物表达载体并转化烟草,对转基因烟草的耐盐性进行初步鉴定。【方法】根据已获得的cDNA序列设计引物,扩增MsERF5、MsERF8和MsERF11的DNA序列,并分析基因结构;利用半定量RT-PCR技术分析其组织表达特异性和胁迫条件下的表达特性;通过农杆菌介导的方法转化烟草,鉴定盐胁迫条件下转基因烟草的表型和生理生化特性,初步验证其功能。【结果】MsERF5、MsERF8和MsERF11都不包含内含子。MsERF5在根、叶和花蕾中的表达量高于茎和花;MsERF8在根和叶中的表达量高于茎、花蕾和花;MsERF11在叶中的表达量最高;3个基因都能被多种非生物胁迫(盐、干旱、铝)和激素(脱落酸、赤霉素、乙烯利、水杨酸和茉莉酸甲酯)诱导,但表达模式不同。在盐浓度为200 mmol•L-1的筛选培养基上只有导入目的基因的愈伤组织能产生不定芽,250 mmol•L-1 NaCl处理再生植株10 d,转基因植株和野生型植株叶片的电导率和可溶性糖含量均呈现上升趋势,但野生型植株叶片的电导率显著高于转基因植株,可溶性糖含量则显著低于转基因植株(P<0.05);转基因植株和野生型植株叶片的叶绿素含量均呈现下降趋势,野生型植株叶片叶绿素含量显著低于转基因植株(P<0.05);盐胁迫条件下,转化不同基因的再生植株的电导率、叶绿素和可溶性糖含量没有显著差异(P>0.05)。【结论】3个紫花苜蓿乙烯应答因子基因都不包含内含子,其表达具有组织特异性,都能被多种非生物胁迫和激素诱导,能够使烟草愈伤组织在含盐培养基上形成不定芽并最终产生转基因植株,且转基因植株的耐盐性高于野生型植株。  相似文献   

8.
为探讨生长素过度合成对植物韧皮部发育的影响,利用韧皮部特异表达的拟南芥蔗糖合成酶基因启动子与色氨酸单加氧酶基因(iaaM)重组,构建载体,通过根癌农杆菌介导的叶盘转化法将其转入烟草,获得了转化的烟草植株。大多转基因烟草都表现出叶片卷曲、植株生长异常的生长素过度表型。转基因烟草植株生长较野生型烟草(对照)植株明显迟缓,但其茎横切面韧皮部细胞显著增多,排列更加紧密整齐,木质部也较早开始分化。转基因烟草茎段有大量不定根分化,其根部则在韧皮部薄壁细胞处诱生大量根原基,在不定根上有大量侧根和根毛的分化。  相似文献   

9.
为研究小热激蛋白基因HSP17.4在大豆热生物胁迫耐受过程中的作用,本试验把植物过表达载体p CPB-HSP17.4和RNA干扰表达载体p CPB-HSP17.4-RNAi利用农杆菌介导法将其导入受体大豆JN18中。经PCR检测,获得T0代阳性植株13株;T1代阳性植株26株;T2代阳性植株39株。T1、T2代转基因植株Southern blotting结果显示,目标基因以单拷贝形式整合到基因组中。荧光定量PCR结果显示,HSP17.4基因在转化植株的叶、茎中均有表达。在42℃高温胁迫下,与未转化植株相比,T1、T2转过表达植株叶片中相对表达量分别为未转化植株的813%和793%,转RNAi表达植株叶片中相对表达量分别为未转化植株的49.77%和52.81%。耐高温鉴定结果表明,转过表达HSP17.4基因提高了植株的耐高温能力。  相似文献   

10.
[目的]筛选大豆RACK1基因的RNAi突变体,为研究RACK1基因在大豆生长发育过程的调控作用提供依据.[方法]采用RT-PCR克隆大豆叶片RACK1基因核心保守序列片段,以植物表达载体pCAMBIA 1301为基本载体,构建抑制大豆RACK基因表达的RNAi载体.通过农杆菌介导转入大豆子叶节,经潮霉素筛选转基因植株,利用PCR、Southern blot及RT-qPCR进行转基因植株检测.[结果]克隆获得大豆RACK1基因核心保守序列片段432 bp;将该基因片段连接到pCAMBIA1301表达载体内含子两侧,通过酶切分析,RNAi载体构建正确.通过农杆菌介导,将该载体转入大豆中黄13号,获得23个转基因大豆株系;经PCR和Southern blot检测,确定大豆RACK1基因RNAi片段已融合到大豆基因组中.经定量RT-qPCR分析,不同转基因大豆株系RACK1基因mRNA的表达量具有明显差异,其在株系5的表达量最高,为对照的68.5%;株系7最低,降至对照的19.9%.[结论]成功构建了大豆RACK1 RNAi表达载体并导入大豆基因组中,获得23个农杆菌介导的RACK1 RNA干扰表达的大豆转基因植株,为研究RACK1基因在大豆生长发育过程中的功能和作用奠定了基础.  相似文献   

11.
为研究小热激蛋白基因HSP17. 4在大豆热生物胁迫耐受过程中的作用,利用农杆菌介导法,将植物过表达载体p CPB-HSP17. 4和RNA干扰表达载体p CPB-HSP17. 4-RNAi导入受体大豆JN18中。经PCR检测,获得T0代阳性植株13株,T1代阳性植株26株,T2代阳性植株39株。T1、T2代转基因植株Southern blotting结果显示,目标基因以单拷贝形式整合到基因组中。荧光定量PCR结果显示,HSP17. 4基因在转化植株的叶、茎中均有表达。在42℃高温胁迫下,与未转化植株相比,T1、T2转过表达植株叶片中相对表达量分别为未转化植株的813%和793%,转RNAi表达植株叶片中相对表达量分别为未转化植株的49. 77%和52. 81%。耐高温鉴定结果表明,转过表达HSP17. 4基因提高了植株的耐高温能力。  相似文献   

12.
[目的]构建矮牵牛PhDFR基因的植物表达载体,并对烟草进行遗传转化。[方法]从不同花色的矮牵牛中克隆了2个PhDFR基因,通过目的基因序列克隆、多步载体酶切、连接、转化等技术手段,将其连入通用植物表达载体pCAMBIA2300及pCAMBIA3301。利用冻融法将重组质粒导入农杆菌GV3101继而转化烟草。[结果]构建了含卡那霉素抗性筛选标记基因NPT11和除草剂抗性筛选标记基因Bar的GFP融合蛋白植物表达载体pCAMBIA2300-PhDFR-GFP和pCAMBIA3301-PhDFR-GFP。转基因植株的GUS染色结果进一步验证了所构建表达裁体的正确性和实用性。[结论]所构建的表达载体为进一步研究PhDFR基因在植物花色调控效应的功能及开展植物花色改良基因工程研究奠定了基础,为植物基因工程科研工作提供了优良的备选植物表达我体。  相似文献   

13.
[目的]了解棉花GhHsf基因的功能,分析该基因的表达模式,构建其植物表达载体并转化烟草获得转基因植株.[方法]利用半定量RT-PCR对棉花热激转录因子基因GhHsf的表达模式进行分析.构建pCAMBIA1301-GhHsf植物表达载体,采用农杆菌介导法转化烟草,并进行鉴定.[结果]棉花GhHsf基因在棉花各组织中为组成型表达;构建GhHsf基因植物表达载体pCAMBIA1301-GhHsf,转化烟草获得了转基因植株.[结论l棉花Gf基因在棉花的不同组织中是组成型表达,获得了转GhHsf基因烟草株,为进一步开展功能研究奠定基础.  相似文献   

14.
将巴西橡胶树金属硫蛋白基因HbMT2插入到植物表达载体pCAMBIA 1304,得到HbMT2基因的植物表达载体pCAMBIA1304-HbMT2.通过电击法将该载体导入根癌农杆菌菌株中并转化烟草.将获得的具有潮霉素(Hyg)抗性的再生植株进行PCR鉴定.结果表明目的基因已经整合到烟草基因组中.抗逆性分析试验显示,转基因烟草对H202处理和紫外线照射耐受性显著提高;重金属离子胁迫下,转基因烟草叶绿素含量、过氧化物酶和过氧化氢酶活性明显高于对照.  相似文献   

15.
【目的】研究杂交鹅掌楸LhFB1基因启动子(pLhFB1)的活性,为研究该基因功能及相关机制提供参考。【方法】利用染色体步移法(Genome Walking)克隆LhFB1基因上游5′侧翼调控区序列,利用生物信息学软件PlantCARE分析其包含的顺式作用调控元件。构建pCAMBIA1300-pLhFB1重组载体,对本氏烟草幼苗期叶片进行瞬转注射和GUS染色表达。花序浸染法将重组载体转化至野生型拟南芥,GUS组织染色分析其在T_2代转基因植株开花期根、茎、叶和花组织中的表达量,并用qRT-PCR对GUS组织染色进行活性验证。【结果】pLhFB1启动子序列长1 780 bp,含有多个TATA-box和CAAT-box及压力响应、激素响应、光信号转导、代谢循环元件。瞬转结果表明,烟草叶片注射部位有蓝色斑点,说明启动子有活性。遗传转化结果表明,转pLhFB1启动子拟南芥根、茎、叶和花组织中都有不同程度的蓝色,且根和茎中的蓝色斑块较深。qRT-PCR结果说明,pLhFB1启动子在拟南芥根、茎、叶和花组织都有表达,与GUS染色结果基本相符。【结论】克隆得到pLhFB1启动子序列,其在转拟南芥植株各组织中都有活性,但以根和茎中较强。  相似文献   

16.
以植物表达载体pCAMBIA3301为基本骨架,以黄色荧光蛋白(yellow fluorescent protein,简称YFP)为标签蛋白构建可融合目标蛋白的表达载体,并包含可用于外源基因插入的单一识别位点的核酸酶酶切位点(SpeⅠ、XbaⅠ、SmaⅠ、BamHⅠ)。为了验证载体的实用性,将构建完成的载体转化到感受态GV3101农杆菌上,进行菌落PCR鉴定,再分别瞬时转化烟草下表皮和稳定转化拟南芥。激光共聚焦显微镜观察结果显示,在阳性转基因植株上均观察到荧光,在阴性对照上没有观察到荧光,表明YFP标签蛋白在转基因受体细胞中能够正常表达。pCAMBIA3301::YFP载体的成功构建为植物蛋白亚细胞定位及过表达转基因植株等相关领域的研究提供了稳定可靠的通用型载体资源。  相似文献   

17.
【目的】应用RNA干扰技术,同时抑制大豆凝集素(Soybean agglutinin,SBA)和脂肪氧化酶(Lipoxygenase,Lox)基因在种子中的表达,改良大豆营养品质,为培育优质大豆材料奠定基础。【方法】根据RNAi原理,酶切获得Lox目的片段,构建以除草剂Bar基因为筛选标记、种子特异性启动子P7αP启动SBA和Lox双干扰的pCAMBIA3301-SBA-Lox(pSBA-Lox)干扰表达载体,并通过农杆菌介导法转化大豆(品种为吉农28),采用PCR、Southern杂交和实时荧光定量PCR对转基因植株进行检测。【结果】质粒PCR和酶切鉴定结果表明,双价RNAi植物表达载体pSBA-Lox构建成功。将其转入到大豆中,对转化植株进行PCR、Southern杂交检测,结果显示,外源基因以单拷贝形式整合到植物基因组中,并能遗传给后代。T1代转基因植株的实时荧光定量PCR分析显示,转基因植株中SBA基因和Lox基因在籽粒中的表达量比未转化受体植株均明显降低,SBA基因表达量降低了35.9%~47.2%,Lox基因表达量降低了32.8%~56.1%,而在幼嫩叶片中的表达量相比对照植株变化不大。【结论】获得了大豆凝集素和脂肪氧化酶表达量均明显降低的T1代转基因大豆。  相似文献   

18.
分别用光诱导型启动子(PrbcS)和组成型启动子(CaMV 35S)驱动柠檬酸合酶基因(cs)在转基因烟草中过量表达,比较转基因烟草中柠檬酸的含量和分泌量及其铝耐受性的变化.结果表明:诱导型转基因株系的CS酶活性是野生型的2.3~2.4倍,组成型转基因株系的酶活性是野生型的1.6~2倍;在30 μmol·L-1铝胁迫下,诱导型转基因植株的根相对伸长量是野生型的2.8~2.9倍,组成型的根相对伸长量是野生型的2~2.3倍;在无铝或300 μmo1·L-1铝胁迫下,转基因烟草叶片和根中柠檬酸含量均高于野生型,其中诱导型转基因植株叶片中柠檬酸含量高于组成型转基因植株,转基因烟草柠檬酸的分泌量分别是野生型的1.8~2.0倍和3.0~3.3倍;在有铝胁迫的珍珠岩基质上培养时,转基因烟草的生长情况好于野生型.这些结果证明,与CaMV 35S相比,采用PrbcS启动子控制cs基因的过量表达可更有效地增加转基因烟草中CS的酶活性及叶片中柠檬酸的合成量,同时也能更有效地提高转基因烟草柠檬酸的分泌量,从而增强其对铝毒害的抵御能力.  相似文献   

19.
[目的]了解苦豆子凝集素基因(SAL)的功能,将该基因构建到植物表达载体并转化烟草,获得转基因植株.[方法]利用RT-PCR技术,提取苦豆子总RNA进行反转录得到cDNA,通过PCR扩增得到苦豆子凝集素基因SAL,并将其克隆到植物表达载体pCAMBIA1301上,产生重组质粒pCAMBIA1301-SAL.采用农杆菌介导法将重组质粒转化烟草,并进行分析鉴定.[结果]构建了植物表达载体pCAMBIA1301-SAL,转化烟草后经筛选获得76株转基因植株,经抗性筛选及PCR和RT-PCR鉴定,其中27株显示为阳性植株.[结论]苦豆子凝集素基因已经在烟草中成功表达,为进一步研究验证转基因烟草的抗病效果奠定了基础.  相似文献   

20.
自根癌农杆菌(Agrobacterium tumefaciens)克隆获得attM基因。采用叶盘转化法,农杆菌介导转化烟草,经过卡那霉素抗性筛选获得抗性愈伤组织,对其分化产生的植物株系进行PCR、PCR-Southern和荧光定量PCR及GUS染色检测分析。结果表明:attM基因被成功插入烟草基因组DNA中。在转基因株系中均能够表达,相对表达量最大可达125.8,最小为31.0。以野生型烟草和转pBI121空载体的烟草为对照,分别进行了离体及活体检测试验,结果表明:转attM基因烟草植株对茄科雷尔氏菌引起的青枯病抗性显著。1×107~1×108CFU.mL-1的青枯菌接种离体叶片,野生型烟草和转pBI121空载体的烟草的中毒面积与接种面积比值为15~25,转基因植株的比值低于3;青枯菌3×106CFU.mL-1伤根接种盆栽烟草植株14d,野生株和转空载体烟草均青枯死亡,病情指数为100,转基因植株病情指数为31.25。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号