首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
SSR结合SRAP标记分析油菜菌核病抗性资源遗传多样性   总被引:1,自引:0,他引:1  
为了更准确、有效地揭示油菜资源遗传多样性,探索SSR和SRAP 2种分子标记在油菜菌核病抗性资源遗传多样性分析中的应用,采用40对SSR核心引物及陕西理工学院生物学院分子与遗传实验室筛选出的40对多态性高、条带清晰的SRAP引物,对陕西省汉中市农科所经过连续3年牙签茎秆接种试验结合多年的田间抗性表现筛选出的43份菌核病抗性较好的油菜材料进行遗传多样性分析,并对2种分子标记揭示的多态性条带数、多态性信息含量(PIC)进行比较。结果表明:2种标记共检测出634个条带,SRAP标记检测的多态性条带数(335)较SSR(287)高,而SSR引物的平均多态性信息含量(PIC)值较SRAP引物高,分别是0.76和0.69。在遗传相似系数0.67处,43份油菜材料被分为Ⅲ类,白菜型油菜(丰油10号白菜型选系)可较好地与甘蓝型油菜区分。主成分分析(Principal component analysis,PCA)、群体结构分析与聚类分析结果相似,说明SSR与SRAP标记结合能准确有效的反映油菜材料的亲缘关系。供试43份油菜材料遗传相似系数分布在0.65~0.81,表明遗传相似性较高,亲缘关系较近。因此,应进一步加强抗源筛选及引进,对现有材料进行遗传改良,拓宽其遗传背景,从而为抗菌核病油菜品种选育奠定基础。  相似文献   

2.

为从分子水平上揭示豇豆种质资源间的亲缘关系,为其种质资源搜集、鉴定、利用和遗传改良提供一定的理论基础,利用SRAP和SSR分子标记对41份来自中国和马来西亚的豇豆种质资源进行遗传多样性研究。从65对SRAP引物和10对SSR引物中分别筛选获得稳定清晰且多态性强的31对SRAP引物和5对SSR引物,对41份栽培豇豆资源的DNA进行SRAP-PCR和SSR-PCR扩增。2种PCR扩增共获230条扩增条带,其中SRAP检测到196条扩增条带,平均每对引物扩增等位基因数为6.3条,多态性片段为161条,多态性比例为82.14%;SSR检测到34条带,平均每对引物扩增等位基因数6.8条,多肽性片段为25条,多态性比例为73.53%,表明本研究搜集的豇豆种质间的遗传多样性比较丰富。基于SRAP和SSR标记的结果,利用UPGMA构建了41份豇豆资源的聚类树状图,其遗传相似系数为0.1667~0.9516,大多在0.674以上。结果表明,SRAP和SSR分子标记能有效地将41份豇豆资源分开,且部分种质间的遗传距离较远,这为豇豆资源的开发利用及新品种的选育提供科学依据。

  相似文献   

3.
以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性   总被引:19,自引:0,他引:19  
利用SRAP和EST-SSR分子标记对192份国内外芝麻种质资源进行遗传多样性分析。结果表明,2种标记都能很好地揭示品种间遗传关系;在31对SRAP引物组合扩增的270个等位基因中多态性占62.08%,平均每对引物可以检测5.45个;25对SSR引物扩增的136个等位基因中56.28%呈多态性,平均每对检测引物产生3.04个。UPGMA聚类结果显示,在相似性系数为0.70时,192份材料可被分为3个类群;阈值为0.75时类群Ⅰ又可分为6组,表明芝麻品种遗传多样性比较丰富。我国南部地区芝麻品种遗传多样性(多样性指数Hi=2.572)较中部(Hi=2.117)和北部地区 (Hi=2.114)丰富。分析结果将有助于更好地保护和利用芝麻种质资源,并为育种工作提供依据。  相似文献   

4.
桃遗传多样性的SRAP和SSR标记分析   总被引:5,自引:0,他引:5  
采用相关序列扩增多态性(SRAP)和简单序列重复多态性(SSR)分子标记,对47份桃(Prunus persica)品种的遗传多样性进行了分析.选用带型清晰的19对SRAP引物和5对SSR引物对47份桃品种的基因组DNA进行扩增,共检测到82个多态性位点.平均每对引物组合产生3.4个多态性位点.应用NTSYS-PC (Version 2.1) 软件采用平均距离法(UPGMA)进行聚类分析.结果表明,47份桃品种的相关系数为0.501~0.842,从总体来看,所选取的47个桃品种相关系数相对较低,遗传多样性比较丰富.对聚类结果分析显示,大部分具有亲缘关系的品种及形态学、生物学特征相近的品种聚在一类,说明聚类分析结果与系谱及生物学特征具有一定的相符性.该研究结果对桃种质资源的鉴定,杂交亲本的选择具有一定的参考价值.  相似文献   

5.
利用SSR和SRAP标记分析花椰菜自交系的遗传多样性   总被引:1,自引:0,他引:1  
为选育优质花椰菜新品种,指导种质资源引进和利用,本研究采用简单重复序(simple sequence repeat,SSR)标记和相关序列扩增多态性(sequence-related amplified polymorphism,SRAP)标记对38份花椰菜自交系进行了遗传多样性分析,分别从48对SSR引物、48对SRAP引物中各筛选出4对有效引物。4对SSR引物扩增的总条带数为47个,多态性条带为39个,平均多态性比率达83.0%;4对SRAP引物扩增的总条带数为86个,多态性条带为51个,平均多态性比率为59.3%,该结果显示花椰菜自交系间具有较丰富的遗传多样性。UPGMA聚类分析揭示了花椰菜自交系的熟期与其遗传差异相关。  相似文献   

6.
豇豆种质资源遗传多样性和亲缘关系的SRAP和SSR分析   总被引:2,自引:0,他引:2  
为从分子水平上揭示豇豆种质资源间的亲缘关系,为其种质资源搜集、鉴定、利用和遗传改良提供一定的理论基础,利用SRAP和SSR分子标记对41 份来自中国和马来西亚的豇豆种质资源进行遗传多样性研究。从65 对SRAP引物和10 对SSR引物中分别筛选获得稳定清晰且多态性强的31 对SRAP引物和5 对SSR引物,对41 份栽培豇豆资源的DNA进行SRAP-PCR和SSR-PCR扩增。2 种PCR扩增共获230 条扩增条带,其中SRAP检测到196 条扩增条带,平均每对引物扩增等位基因数为6.3 条,多态性 片段为161 条,多态性比例为82.14%;SSR检测到34 条带,平均每对引物扩增等位基因数6.8 条,多肽性片段为25 条,多态性比例为73.53%,表明本研究搜集的豇豆种质间的遗传多样性比较丰富。基于SRAP 和SSR 标记的结果,利用UPGMA 构建了41 份豇豆资源的聚类树状图,其遗传相似系数为0.1667~0.9516,大多在0.674 以上。结果表明,SRAP和SSR分子标记能有效地将41 份豇豆资源分开,且部分种质间的遗传距离较远,这为豇豆资源的开发利用及新品种的选育提供科学依据。  相似文献   

7.
掌握宁夏地区主要马铃薯品种的遗传多样性,了解其遗传背景,明确各品种间的亲缘关系为马铃薯育种提供理论依据。利用SSR和SRAP 2种分子标记对47份马铃薯种质材料进行遗传多样性分析,并对2种分子标记结果进行比较。12对多态性SRAP标记共检测到180个多态性位点,平均每对引物检测到15个多态性位点,每个SRAP位点的PIC值为0.2~0.43,平均值为0.34;47份马铃薯种质资源遗传相似性系数为0.57~0.83。15对多态性SSR标记检测到80条多态性位点,平均每对引物检测到 5.3个多态性位点,每个SSR位点的PIC值为0.37~0.72,平均值为0.51;马铃薯种质材料遗传相似性系数为0.60~0.97。根据系谱资料分析发现,SRAP标记更适用于遗传关系较近材料的遗传多样性分析。宁夏地区主要的马铃薯品种遗传相似度较低,亲缘关系较远。  相似文献   

8.
利用SRAP与SSR标记分析不同类型甜菜的遗传多样性   总被引:19,自引:1,他引:18  
为选育优质甜菜新品种, 指导种质资源引进和利用, 为进行分子标记辅助选择育种提供科学依据, 采用SRAP和SSR两种分子标记方法相结合, 对甜菜单胚雄性不育系及保持系等49份材料进行遗传多样性分析。利用4个表型差异显著的甜菜品系对SRAP的64对引物组合及SSR的11对引物组合进行扩增, 分别筛选出有效引物组合11对和9对。SRAP的11对引物组合共产生199条扩增带, 其中有86条多态性带, 多态性带的比率平均为43.7%。SSR的9对引物共产生35条扩增带, 多态性比率为100%。全部材料的平均遗传距离为0.3860, 平均遗传相似系数为0.6795, 大约30%的材料遗传距离或遗传相似系数具显著或极显著差异。遗传相似系数平均值比较, 多胚四倍体品系0.7264>单胚杂交组合0.7243>国外品种0.7060>多胚二倍体品系0.6908>单胚品系0.6837。在遗传距离0.20处, 将49个甜菜材料划分为A、B、C、D 4个类群, D类群又分为4个亚类, 较好地显示了甜菜材料丰富的遗传多样性。表明不同甜菜品种具有相当高的异质性, 国外与国内材料的遗传基础存在一定差异, 但生产应用的甜菜品种间存在亲缘关系较近、遗传基础较窄的倾向。  相似文献   

9.
本研究选用产量性状有显著差异的7个粳稻品种,按照Griffing双列杂交方法Ⅳ配制21个杂交组合,用SSR和SRAP分子标记分析亲本遗传距离及其与粳稻产量性状杂种优势问的关系,并比较分析两种分子标记在估算遗传距离时的差别.结果表明,每对SSR引物产生1~11条多态性带,平均3.8条,而每对SRAP引物组合产生1~15条多态性带,平均5.2条.SRAP引物所扩增的条带数和多态性何点数分别是SSR引物的3.3倍和1.3倍.两种分子标记对遗传相似系数较小的品种进行聚类分析时可获得一致的结果,但对遗传相似系数较大的品种进行聚类分析时所得结果并不一致;粳稻产量性状杂种优势的表现大小因件状和杂交组合不同而异;F_1杂种产量性状的表现与亲本自身的性状特点和互补关系密切,用SSR和SRAP分子标记遗传距离难以预测粳稻杂种后代的产量表现和杂种优势强弱.  相似文献   

10.
四个国家海岛棉品种资源的亲缘关系和遗传多态性研究   总被引:7,自引:2,他引:5  
以海岛棉标准系3-79为对照,陆地棉标准系TM-1为参考对照,用SSR引物对来自前苏联、中国、美国和埃及等4个海岛棉主要生产国(地区)的20份海岛棉种质资源的基因组DNA进行SSR分析,研究不同海岛棉生产国的海岛棉品种资源的遗传亲缘关系和遗传多样性。108对SSR引物共获得了175条多态性谱带,平均每个引物扩增出1.62条多态性谱带。供试海岛棉品种之间的遗传相似系数为0.66~0.94,平均值为0.81。根据UPGMA聚类分析,以遗传相似系数阀值为0.77,可将20份栽培棉花种质材料分为4大类:第一类均为前苏联品种,第二类均为中国品种,第三类以美国品种为主,第四类以埃及品种为主。遗传多样性分析结果表明,前苏联海岛棉品种资源的遗传多样性最为丰富,而埃及的海岛棉品种资源遗传距离最狭窄,我国的海岛棉品种资源的遗传多样性居中。本研究表明,供试材料遗传背景与其产地背景有一定关联性,SSR标记能较好地揭示供试棉花品种之间的遗传差异和亲缘关系。  相似文献   

11.
黄瓜远缘群体分子遗传连锁图谱的构建和分析   总被引:1,自引:0,他引:1  
以野生黄瓜品种和普通栽培黄瓜品种作亲本获得的142个F2群体为材料,采用AFLP,SRAP,SSR等分子标记进行遗传分析,构建了包含10个连锁群,有159个标记组成的黄瓜遗传连锁图谱,其中包括112个AFLP标记,39个SRAP标记和8个SSR标记。该遗传图谱覆盖基因组长度743.11 cM,平均图距4.67 cM。  相似文献   

12.
亚麻遗传连锁图谱的构建   总被引:2,自引:0,他引:2  
利用DIANE (纤用亚麻栽培种)和宁亚17 (油用亚麻栽培种)为杂交亲本,构建30个F2单株作为作图群体,选用71对SRAP和24对SSR共显性标记构建了全长为546.5 cM,含12个连锁群(LGs)的亚麻遗传连锁图谱,标记均匀分布于12个连锁群,每个连锁群有4~15个标记,标记间平均距离为5.75 cM。结果表明,SRAP标记和SSR标记中共显性标记适合于亚麻遗传连锁图谱的构建,但该图谱覆盖的基因组范围较小,需继续图谱的完整性工作。本研究为今后的亚麻在分子生物学方面的研究提供了基础信息。  相似文献   

13.
甜菜遗传连锁图谱初步构建   总被引:6,自引:1,他引:5  
王茂芊  李博  王华忠 《作物学报》2014,40(2):222-230
以甜菜高产低糖型JV34-2和低产高糖型2B023两材料杂交, 构建了200个单株的F2作图群体, 利用所筛选出的56对SRAP引物组合和20对SSR引物, 对F2作图群体进行PCR扩增和遗传连锁分析, 初步构建了一张包含9个连锁群、141个(123个SRAP和18个SSR)标记位点的甜菜遗传连锁图谱。该图谱覆盖长度为1399.88 cM, 平均图距9.92 cM。未进入连锁群的有4个标记。9个连锁群包含3~26个标记不等, 连锁群遗传距离15.69~237.21 cM。连锁群上有20.56%的标记出现偏分离, 主要集中在Ch3连锁群上, 其余分散在Ch1、Ch2、Ch8和Ch9中。该图谱是我国甜菜领域利用SRAP和SSR相结合方法, 构建的第一个较精密的分子遗传图谱, 为重要性状的基因定位和优良基因的克隆奠定了基础。  相似文献   

14.
Genetic diversity is the basis for successful crop improvement and can be estimated by different methods. The objectives of this study were to estimate the genetic diversity of 30 ancestral to modern hard red winter wheat (Triticum aestivum L.) cultivars adapted to the Northern Great Plains using pedigree information, morphological traits (agronomic measurements from six environments), end-use quality traits (micro-quality assays on 50 g grain or milled flour samples for the six environments), and molecular markers (seed storage proteins separated using SDS-PAGE, 51 SSRs, and 23 SRAP DNA markers), and to determine the relationships of genetic distance estimates obtained from these methods. Relationships among diversity estimates were determined using simple (Pearson) and rank (Spearman) correlation coefficients between distance estimates and by clustering cultivars using genetic-distances for different traits. All methods found a wide range in genetic diversity. The genetic distance estimates based on pedigree had the highest values due to possible over-estimation arising from model assumptions. The genetic diversity estimates based on seed storage protein were lowest because they were the major determinants of end-use quality, which is a highly selected trait. In general, the diversity estimates from each of the methods were positively correlated at a low level with the exceptions of SRAP diversity estimates being independent of morphologic traits (simple correlation), SDS-PAGE, and SSR diversity estimates (rank correlation). However, SSR markers, thought to be among the most efficient markers for estimating genetic diversity, were most highly correlated with seed storage proteins. The procedures used to accurately estimate genetic diversity will depend largely upon the tools available to the researcher and their application to the breeding scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号