首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
大豆分枝数和叶柄夹角的相关野生片段分析   总被引:2,自引:1,他引:1  
【目的】从以栽培大豆为遗传背景的野生大豆染色体片段代换系(CSSL)群体中检测出与分枝数和叶柄夹角有关的野生片段,估计其遗传效应,为未来基因克隆和功能研究提供材料基础。【方法】利用由151个家系组成的野生大豆CSSL群体(SojaCSSLP1),通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等四种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与分枝数和叶柄夹角相关的野生片段。【结果】累计共检测到3个分枝数相关的野生等位变异/片段和5个叶柄夹角相关野生等位变异/片段,其中与分枝数相关的Sat_160野生片段和与叶柄夹角相关的Sat_286野生片段能分别被所有方法检测到。在这些QTL/片段中,Sat_286位点最高能解释22%的叶柄夹角表型变异;在所有检测到的位点(片段)上,来自野生大豆的等位基因均具有正向的加性效应,这与2个亲本的表型差异相吻合。【结论】所发现的3个分枝数和5个叶柄夹角野生等位变异/片段均来自未报道的QTL/片段,体现了野生大豆的特点。  相似文献   

2.
发掘响应接种根瘤菌的大豆产量相关性状遗传位点和基因,对于大豆固氮能力改良的分子育种至关重要。本研究通过在低氮条件下对大豆重组自交系群体和自然群体分别接种根瘤菌,进而发掘了株高、主茎节数、分枝数、单株荚数、单株粒数、单株粒重和百粒重等产量相关性状QTL位点和候选基因。通过关联分析共获得分布于10条染色体上的59个产量相关性状显著性SNP,有8个SNP与单株荚数、单株粒重和百粒重等重要产量性状显著关联。在RIL群体中,共定位到23个产量相关性状加性QTL和13对上位性QTL,其中加性QTL分布于8条染色体,表型贡献率为5.90%~32.87%。在这些QTL中,控制单株荚数和百粒重的QTL各有2个、控制单株粒数和单株粒重的QTL各有3个,对表型的贡献率为5.95%~24.60%。进一步分析发现,在自然群体和RIL群体中的产量相关性状一致性QTL主要位于6号与19号染色体上,有23个可能的候选基因位于这些一致性QTL附近的基因组区域。  相似文献   

3.
超高产夏大豆品种主要农艺性状的遗传分析   总被引:2,自引:0,他引:2  
选育产量潜力超过4 000 kg/hm^2的大豆品种,估算了10个主要农艺性状的总体平均值、遗传变异系数,遗传力、遗传进度以及9个性状与单株粒重的遗传相关系数、相关遗传进度等遗传参数.分析结果表明:(1)单株粒数、株高和有效荚数遗传力高,遗传进度大;(2)开花期、生育日数和百粒重遗传力高,遗传进度小;(3)底荚高、主茎节数和分枝数遗传力小,遗传进度也小;(4)单株粒重遗传力最低,遗传进度也小.在杂种早期世代选择中以第一类性状选择效果最好.  相似文献   

4.
本文对3个栽培大豆与半野生大豆杂交组合进行了分析,结果表明:大豆品种间杂种优势是普遍存在的,而且主要表现在产量性状上,百粒重的杂种优势及超亲优势为负值。超亲优势的表现与杂种优势的表现基本相同。杂种后代植株高、分枝多、籽粒小是半野生大豆在育种工作中利用的障碍。为克服杂种后代的小粒性,必须用大粒亲本进行回交并进行定向选择。利用双亲的平均值可以预测F1代的株高、主茎节数、有效分枝数、单株荚数、单株粒重、百粒重。F1代单株粒重的增加主要依赖于单株荚数、单株粒数、百粒重的增加,与栽培大豆亲本(Pc)、半野生大豆亲本(Psw)和双亲平均值(Mp)相关不显著。  相似文献   

5.
本文对4个栽培大豆与半野生大豆杂交组合后代进行了遗传分析。结果表明:除百粒重外,杂种F_1代各农艺性状优势表现普遍存在。F_2代性状分离广泛,类型丰富,出现了大量超亲植株。株高、主茎节数、百粒重、茎粗、一荚粒数遗传力较高。单株粒重、单株粒数、单株荚数、每节荚数遗传力居中,分枝数最低。各性状的遗传进度绝对值都比较大,选择效果明显。半野生大豆利用应予以重视。  相似文献   

6.
选用来自全国各地野生大豆和栽培大豆地方品种中有代表性的材料,分析其在等位酶、细胞器DNA RFLP和细胞核DNA RAPD标记位点上的群体遗传表现。结果表明:野生大豆在上述标记位点上的综合遗传多样性水平高于栽培大豆,二者的综合遗传丰富度和遗传离散度分别为180(95.2%)和154(81.5%)及0.2891和0.2091。野生大豆与栽培大豆群体在所分析的大多数位点上等位基因的分布频率差异明显,其中差异较大的标记位点有Idh1、Aph、Idh2和Dia(等位酶);cpⅠ、cpⅢ、mtⅣa和mtⅣb(细胞器DNA RFLP);OPAP4-8,OPAP5-1,OPAP9-8和OPAP20-8(细胞核DNA RAPD)。这些标记位点可作为进化的标记性状,以研究大豆的起源和演化问题。  相似文献   

7.
为检测水稻纹枯病抗性基因位点,采用牙签接种法对籼稻9311和粳稻日本晴以及由它们构建的119个染色体单片段置换系进行纹枯病抗性鉴定,并使用该群体的分子连锁图谱进行数量性状座位(QTL)分析。共检测到3个纹枯病相关 QTL(qsb8-1, qsb8-2和 qsb8-3),分别位于第8染色体相邻标记 RM3262、RM5485和 RM3496附近,所在遗传区间分别为81.7cM-91.7cM、91.7cM-108.1cM和108.1cM-119.6cM。其中 qsb8-2的加性效应为负值,表明感病亲本携带的该片段可以增强纹枯病抗性;qsb8-1和qsb8-3的加性效应为正值,表明感病亲本携带的该片段减弱了纹枯病抗性。  相似文献   

8.
基于元分析的大豆成熟期单片段代换系鉴定与QTL定位   总被引:2,自引:0,他引:2  
【目的】大豆成熟期是由多基因控制的数量性状,是影响大豆产量和适应性的重要性状。研究大豆成熟期单片段代换系遗传规律,鉴定分析大豆成熟期的主效QTL。【方法】以大豆红丰11为受体和回交亲本,以15个国内外大豆核心种质为供体亲本,构建回交导入系群体,基于元分析的大豆成熟期(R8)“真实QTL”SSR标记进行单片段代换系鉴定,利用“图示基因型法”计算导入片段和代换作图法鉴定大豆成熟期QTL,用单标记法鉴定成熟期重要QTL。【结果】在C2、L连锁群上检测到16种导入片段,C2连锁群检测到7种导入片段,导入片段总长度为9.8 cM。L连锁群检测到9种导入片段,导入片段总长度为37.212 cM;在C2和L连锁群上共检测出8个成熟期QTL,根据前人的研究,在L连锁群上有2个QTL即Sat_010、Satt156是E4/e4的特异SSR标记;在8个成熟期QTL中用单标记法鉴定了5个有关大豆成熟期重要SSR标记Sat_238、Satt460、Sct_010、Satt166、Sat_113;确定了单片段Satt460缩短大豆生育期,单片段Sat_238、Sct_010、Sat_113延迟大豆生育期。【结论】基于元分析的成熟期2个导入位点C2、L连锁群上检测到16种单片段,用代换作图法共检测出8个成熟期QTL,用单标记法鉴定了5个有关大豆成熟期重要SSR标记Sat_238、Satt460、Sct_010、Satt166、Sat_113。确定单片段Satt460与缩短大豆生育期有关,单片段Sat_238、Sct_010、Sat_113与延迟大豆生育期有关。  相似文献   

9.
选用来自全国各地野生在豆和栽培大豆地方品种中有代表性的材料,分析其在等位酶、细胞器DNARFLP和细胞核DNAPAPD标记位点上的群体遗传表现。结果表明:野生大豆在上述标记位点上的综合遗传多样性水平高于栽培大豆,二者的综合遗传丰富度和遗传离散度分别为180(95.2%)和154(81.5%)及0.2891和0.2091。野生大豆与栽培大豆群体在所分析的大多数位点上等位基因的分布频率差异明显,其中差  相似文献   

10.
对来自于中国黄淮海大豆产区、北方大豆产区和南方大豆产区的316个大豆品种的主要农艺性状进行了鉴定和比较。结果表明,育成品种的分枝数、分枝荚数、单株总荚数明显不及农家品种,而其它性状如主茎荚数、单株粒重、单株粒数和百粒重优于农家品种。以育成品种和农家品种分别所作的相关分析表明,主茎荚数、分枝荚数、单株总荚数均与单株粒数和单株粒重呈显著的正相关;主茎节数与株高、主茎荚数、单株总荚数、单株粒重、单株粒数呈显著正相关;分枝数与分枝荚数、单株总荚数、单株粒数和单株粒重呈极显著或非显著正相关,但与主茎荚数呈负向显著相关;单株粒数与单株粒重显著正相关,百粒重与单株粒重正向显著相关,与单株粒数负相关显著。通过比较和分析,就百粒重、生育期和株高筛选出一些具有极端值的品种,可以用作品种选育的亲本和大豆分子育种如转基因受体或分子标记作图群体的遗传材料。  相似文献   

11.
【目的】以栽培黄瓜(Cucumis sativus L. , 2n = 14)‘北京截头’为受体亲本,以野生酸黄瓜( C. hystrix Chakr, 2n = 24)为供体亲本,采用SSR标记辅助选择法构建黄瓜-酸黄瓜染色体片段导入系群体。初步定位控制黄瓜果实外形的数量性状基因。【方法】首先通过种间杂交-回交-自交获得大量的染色体片段导入系株系。然后选择均匀分布在黄瓜染色体组上的298对SSR标记对亲本进行多态性检测,使用检测出的亲本间差异引物对染色体片段导入系株系进行检测,筛选含有野生酸黄瓜染色体片段的植株。对该群体果实外形进行初步调查,利用t测验与轮回亲本比较,鉴定QTL。【结果】本研究构建了由50个株系组成的染色体片段导入系群体。在该群体中共检测到149个染色体导入片段,包含61个不同的导入片段,不同导入片段的总长度为259.95 cM,基因组覆盖率为45.37%。导入片段的长度在1.65-15.4 cM,平均长度为5.41 cM,分布于黄瓜的7条染色体上。利用该导入系群体初步定位了控制黄瓜果型的13个QTL。【结论】构建了一套以栽培黄瓜为背景,野生酸黄瓜为前景的染色体片段导入系群体,并利用该导入系初步定位了控制黄瓜果型的QTL,为开发利用野生酸黄瓜的优良基因提供了新的种质资源,也为今后定位黄瓜的数量性状遗传位点奠定了材料基础。  相似文献   

12.
【背景】开花期是大豆重要的生育期性状,不仅决定了大豆品种的适种范围,而且对大豆的产量和品质有重要影响。江淮地区是中国重要的大豆产区,目前对该地区夏大豆开花期性状遗传基础研究相对较少。【目的】利用2个夏大豆材料杂交衍生的重组自交系群体对开花期进行QTL定位,为分子标记辅助选择育种和基因克隆提供依据。【方法】以科丰35(KF35)和南农1138-2(NN1138-2)为亲本,构建了含91个家系(F2:8)的重组自交系群体(NJK3N-RIL),在6个环境下调查开花期性状数据。利用限制位点相关DNA测序(restriction-site associated DNA sequencing,RAD-seq)技术对群体亲本及家系材料进行SNP标记分型,并利用窗口滑动法进行bin标记划分。利用bin标记构建该群体的遗传图谱,结合多年多点的表型数据,使用QTL Network 2.2软件中的基于混合线性模型的复合区间作图法(mixed-model based composite interval mapping,MCIM)和Windows QTL Cartographer V2.5_011软件中的复合区间作图法(composite interval mapping,CIM)对开花期性状进行QTL分析。【结果】在大豆全基因组范围内共获得36 778个高质量SNP标记,被划分为1 733个bin标记。利用1 733个bin标记构建了一张覆盖大豆20条染色体遗传图谱,图谱长度为2 362.4 cM,标记间平均遗传距离为1.4 cM。利用MCIM法共检测到9个控制开花期的加性QTL、2对上位性QTL和1个环境互作QTL,3种效应累积贡献率分别为63.9%、4.6%和2.1%。利用CIM法共检测到10个控制开花期的QTL,其中qFT-8-1qFT-11-1qFT-15-1qFT-16-1能在3个及以上环境检测到。综合2种分析方法,共检测到12个开花期QTL,其中qFT-8-1qFT-11-1qFT-15-1qFT-16-1qFT-16-2qFT-20-1qFT-20-2等能够被2种方法检测到。同时qFT-5-1qFT-8-1qFT-8-2qFT-13-1qFT-15-1qFT-20-2等是本研究新检测到的开花期QTL。【结论】夏大豆开花期遗传构成复杂,但加性QTL效应占绝对优势,上位性互作及环境互作效应对开花期影响较小。qFT-8-1qFT-11-1qFT-15-1qFT-16-1能够被2种方法在多个环境中检测到,是NJK3N-RIL群体中控制开花期的重要位点。  相似文献   

13.
 【目的】构建黄麻遗传连锁图谱,定位质量性状基因,为今后有关黄麻基因组结构、重要农艺性状QTL定位、分子标记辅助育种和基因克隆等研究工作奠定基础。【方法】以甜麻(黄麻野生种)和宽叶长果(黄麻栽培品种)为杂交亲本,构建了187个F2单株作为作图群体,利用513对SRAP引物进行遗传图谱构建,并对3个质量性状基因(托叶色、叶柄色、叶缘色)进行了定位。【结果】122个SRAP多态性标记位点和这3个形态学标记被定位在该图谱上,初步构建的长果种黄麻遗传连锁图谱全长2 231.9 cM,包含10个连锁群,每个连锁群有2—38个标记位点,2个标记间平均间距为17.86 cM。【结论】该图谱上的标记位点均匀分布在10个连锁群上,没有出现标记位点聚集的现象,表明SRAP标记十分适合黄麻遗传图谱的构建。  相似文献   

14.
利用BSA法发掘野生大豆种子硬实性相关QTL   总被引:1,自引:0,他引:1  
【目的】野生大豆的硬实性是大豆遗传改良利用中的重要限制因素。利用BSA法发掘与大豆种子硬实性相关的QTL,为野生大豆在大豆遗传改良中的合理利用奠定基础。【方法】利用栽培大豆中黄39与野生大豆NY27-38杂交构建F2和F7分离群体,从每个单株选取整齐一致的种子,取30粒种子置于铺有一层滤纸的培养皿中,加入30 mL蒸馏水,25℃培养箱中暗处理4 h,设3次重复,分别统计每个培养皿中正常吸胀和硬实种子数。在F2群体中,选取22个正常吸胀单株(吸胀率>90%)和16个硬实单株(吸胀率<10%);在F7群体中,选取20个完全吸胀单株(吸胀率=100%)和20个完全硬实单株(吸胀率=0%),单株DNA等量混合,分别构建2个吸胀和2个硬实DNA池。利用259对在亲本间有多态性的SSR标记对吸胀和硬实DNA池进行检测,筛选在吸胀和硬实DNA池间表现多态性的SSR标记;用192个SSR标记检测F7分离群体,构建遗传图谱,利用复合区间作图法定位大豆硬实相关QTL。【结果】利用F2个体构建的吸胀和硬实DNA池,在第2染色体16.3 Mb区间和第6染色体23.4 Mb区间分别检测到10个和8个在两池间有差异的SSR标记。利用这些标记检测F2群体,将第2染色体的QTL定位于Satt274与Sat_198间的276.0 kb区间,该区间包括已克隆的大豆硬实基因GmHs1-1,解释17.2%的表型变异。第6染色体的QTL位于标记BARCSOYSSR_06_0993与BARCSOYSSR_06_1068间,可解释17.8%的表型变异。利用F7株系构建的吸胀和硬实DNA池,在第2(27.4 Mb区间)、6(27.8 Mb 区间)和3染色体(18.2 Mb区间)分别检测到11个、9个和4个在两池间有多态性的SSR标记。利用F7群体构建包括192个SSR标记、覆盖2 390.2 cM的遗传图谱,共检测到3个硬实相关QTL,其中第2染色体定位到的QTL位于标记Satt274与Sat_198间,可解释23.3%的遗传变异。第6染色体定位到的QTL位于标记Sat_402与Satt557之间,可解释20.4%的表型变异。在第3染色体标记Sat_266与Sat_236间发现一个可以解释4.9%表型变异的QTL,与BSA法检测的结果相符。【结论】利用BSA法可以检测到传统遗传作图定位的所有与硬实性相关的QTL,证明BSA法发掘大豆种子硬实性主要QTL的高效性。  相似文献   

15.
【Objective】 Hard seededness of wild soybean is an important effector that limits the utilization of wild resources in soybean genetic improvement. Bulked segregant analysis (BSA) was employed to identify major quantitative trait loci (QTLs) related with hard seededness in soybean, which laid a foundation for effective utilization of wild soybean germplasm in cultivated soybean improvement. 【Method】 F2 and F7 segregation populations were constructed from a cross between cultivated soybean Zhonghuang39 and wild soybean NY27-38. Uniformly sized seeds were selected from each line, and 30 seeds were soaked in a petri dish with 30 mL distilled water for 4 hours at 25℃. The assay was replicated 3 times. The number of permeable and impermeable seeds were counted. In F2 population, the first DNA pool was constructed from 22 individuals with permeable seeds (imbibition rate >90%), and second DNA pool was constructed from 16 individuals with impermeable seeds (imbibition rate <10%). In F7 population, 20 lines with permeable seeds (100% imbibition) and 20 lines with impermeable seeds (no imbibition) were used to construct two DNA pools, respectively. To detect genomic regions associated with hard seededness, these DNA bulks were genotyped with 259 polymorphic SSR markers to identify markers linked to QTL. A linkage map was constructed with 192 SSR markers, QTLs related with hard seededness were identified by composite interval mapping in F7 segregation population. 【Result】 Out of 259 SSR loci polymorphic between Zhonghuang39 and NY27-38, 10 and eight polymorphic SSR markers between the permeable and impermeable pools were detected in 16.3 Mb interval on chromosome 2 and 23.4 Mb interval on chromosome 6, respectively, in F2 population. The QTL region (276.0 kb) located between Satt274 and Sat_198 on chromosome 2 contained previously cloned gene GmHs1-1, the QTL explained 17.2% of the total genetic variation. The other QTL was mapped on chromosome 6 flanked by BARCSOYSSR_06_0993 and BARCSOYSSR_06_1068, accounting for 17.8% of the total genetic variation. In F7 population, eleven, nine and four SSR polymorphic markers between the permeable and impermeable pools were detected in 27.4 Mb interval on chromosome 2, 27.8 Mb interval on chromosome 6, 18.2 Mb interval on chromosome 3, respectively. A linkage map of 192 SSR markers and covering 2 390.2 cM was constructed through composite interval mapping in F7 population. Three QTLs related with hard seededness were detected. The QTL on chromosome 2 located between Satt274 and Sat_198, explained 23.3% of the total genetic variation; the QTL on chromosome 6 flanked by Sat_402 and Satt557, explained 20.4% of the total genetic variation; the QTL on chromosome 3 flanked by Sat_266 and Sat_236 accounted for 4.9% of the total genetic variation. 【Conclusion】 In this study, three QTLs related to soybean hard seededness were identified by both BSA and traditional linkage mapping, indicating that BSA is an effective strategy for identifying QTLs in soybean.  相似文献   

16.
大豆γ-生育酚的混合遗传分析与QTL定位   总被引:1,自引:0,他引:1  
【目的】通过对大豆γ-生育酚进行混合遗传和QTL定位分析,了解其遗传机制,定位其主效QTL,为高γ-生育酚含量大豆品种的选育奠定基础。【方法】以栽培大豆晋豆23为母本,以山西农家品种大豆灰布支黑豆为父本杂交衍生的重组自交系作为供试群体构建遗传图谱。图谱全长2 047.6 cM,平均图距8.8 cM,包括227个SSR标记,232个标记位点。重组自交系试验群体及亲本材料分别于2011年、2012年和2015年夏季在河南省农业科学院原阳试验基地种植,冬季在海南省三亚南繁试验基地种植。田间试验采取随机区组设计,2次重复。从6个环境中每个家系选取15.00 g籽粒饱满,大小一致的大豆种子,利用高效液相色谱法定性、定量测定样品中的γ-生育酚含量。采用主基因+多基因混合遗传分离分析法,对大豆γ-生育酚含量进行混合遗传分析;采用WinQTLCart 2.5复合区间作图法,对大豆γ-生育酚含量进行QTL定位分析。【结果】主基因+多基因混合遗传分析表明,γ-生育酚受2对重叠作用主基因×加性多基因控制。遗传基因分布在双亲中。三亚试验数据检测出2对主基因间上位性效应值为0.4010—0.5169和多基因的加性效应值为0.1797—0.2146,主基因遗传率为11.27%—13.05%,多基因遗传率为82.51%—86.55%,多基因效应大于主基因效应。原阳试验数据检测到2对主基因间上位性效应值为0.9646—1.8455,主基因遗传率为39.51%—58.96%,没有检测出多基因效应。采用WinQTLCart 2.5复合区间作图(CIM)共检测到9个影响γ-生育酚的QTL,分布于A1(Chr.5)、A2(Chr.8)、C1(Chr.4)、K(Chr.9)、M(Chr.7)和G(Chr.8)6条染色体中,单个QTL的贡献率为7.29%—29.55%。qγ-G-1同时在2011年原阳、2012年三亚、2015年三亚3个环境下检测到,且均定位在G(Chr.18)染色体Satt275—Satt038标记区间0.01 cM处,解释的表型变异分别为8.97%、8.12%和7.91%。qγ-A1-1同时在2011年原阳和2015年原阳2个环境下检测到,且均定位在A1(Chr.5)染色体Satt276—Satt364标记区间0.01 cM处,解释的表型变异分别为29.54%和28.23%。qγ-G-1qγ-A1-1 2个QTL能够稳定遗传。【结论】γ-T最适遗传模型符合MX2-Duplicate-A,即2对重叠作用主基因×加性多基因模型。其遗传同时受到基因型、环境和上位性的影响。检测到γ-T的2个稳定主效QTL,Satt275—Satt038和Satt276—Satt364是共位标记区间。  相似文献   

17.
[目的]大豆是短日喜温植物,对光温(日长、温度)条件敏感.大豆对光温反应的敏感性是大豆重要的驯化性状和适应性性状.在自然条件下,地理位置和/或播种季节是决定野生和栽培大豆分化的重要生态因素,这两个因素均是通过日长和温度等环境因素来调控大豆的生长发育.因而研究和比较野生和栽培大豆生长发育阶段光温综合反应特性的地理和季节分...  相似文献   

18.
【目的】 大豆(Glycine max)原产于中国,高品质的大豆在食品、饲料、纺织品等多种加工业中广泛应用,因此,选育高品质大豆已成为育种者和生产者的聚焦问题。通过对大豆脂肪酸各组分进行QTL定位及候选基因的筛选,为大豆品质改良奠定分子基础。【方法】 以美国大豆品种Charleston和东农594为亲本构建重组自交系(RILs)、以栽培大豆绥农14与野生大豆ZYD00006为亲本构建染色体片段代换系(CSSLs)为试验材料。利用气相色谱法测定2个群体的脂肪酸含量,根据东北农业大学农学院大豆遗传改良实验室已构建的遗传图谱,通过Windows QTL Cartographer 2.5和ICIMapping软件对2017—2018年RIL群体与CSSL群体中的大豆脂肪酸组分进行QTL定位研究,并对所获得的QTL置信区间进行候选基因的挖掘。【结果】 2017—2018年,RIL群体和CSSL群体分别定位到34和20个与脂肪酸组分相关的QTL,分布在除B2、C1、G、H、J、M和O以外的13个连锁群上。比较2个群体的QTL定位结果,发现在2个群体中重复检测到10对QTL,其中,分布在A1、C2、D1a、F、K和N连锁群上的QTL与多种脂肪酸含量相关,在A1连锁群上检测到亚油酸和油分含量重叠的QTL;在C2连锁群上检测到硬脂酸和油分含量重叠的QTL;在D1a连锁群上检测到硬脂酸和油分含量重叠的QTL;在F连锁群上检测到棕榈酸、硬脂酸和油分含量重叠的QTL;在K连锁群上检测到亚油酸和亚麻酸含量重叠的QTL;在N连锁群上检测到棕榈酸和油分含量重叠的QTL、油酸和亚油酸含量重叠的QTL。对QTL定位获得的所有置信区间进行候选基因的挖掘,从基因注释数据集中共筛选出485个候选基因,其中,271个候选基因具有GO注释,进一步进行GO富集数据分析,共有15个候选基因与脂肪酸相关。主要通过编码植物酰基-酰基载体蛋白(ACP)硫酯酶、脂肪酸去饱和酶、磷脂酶D1、脂肪酸-羟化酶、丙酮酸激酶和参与酰基辅酶A生物合成、调节脂肪酸链的延伸,从而影响脂肪酸的合成。【结论】 共检测到54个与大豆脂肪酸各组分相关的QTL,在2个群体中重复检测到10对QTL,对QTL定位获得的置信区间进行候选基因的筛选,共有15个候选基因与脂肪酸相关。这些稳定的脂肪酸相关的QTL和脂肪酸相关的候选基因可用于大豆脂肪酸改良的分子标记辅助选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号