首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
张佳薇  姜滨  张娜  崔莉 《安徽农业科学》2013,(32):12624-12626
[目的]研究木材纤维饱和点近区段含水率预测模型。[方法]电阻法测量木材纤维饱和点近区段含水率会出现测量值突然偏离真值的现象,即出现测量“盲点”。在研究检测原理的基础上,提出利用支持向量机方法对已测木材含水率、温度和湿度数据进行训练建模,通过模型预测得出纤维饱和点近区段含水率数值。[结果]支持向量机方法建立的模型能够预测木材纤维饱和点近区段含水率数值,模型泛化能力强,预测精度高,而且只需要少量样本数据就可以实现预测,很好地解决了电阻法在测量过程中的“盲点”问题。[结论]支持向量机预测模型提高了木材干燥过程中全量程含水率的检测精度,对木材干燥过程的含水率建模具有一定研究意义。  相似文献   

2.
针对木材干燥过程样本数据存在较多噪声的问题,采用核主成分分析方法对木材干燥数据进行预处理,然后利用粒子群优化的支持向量机建立木材干燥系统的在线预测模型,并进行在线预测。仿真研究表明,对数据预处理后,降维训练样本建立的木材干燥模型能够获得很好的预测精度,计算量小,速度快。在线模型能够实时反映系统当前状态,在线优化模型结构并预测系统下一步输出,实现了木材含水率特性变化的动态预测。模型输出误差小、泛化能力强,能够满足实际干燥过程在线预测控制的需要,具有良好的实际应用价值和工业前景。  相似文献   

3.
针对龙胆草微波真空干燥过程中含水率在线检测困难的问题,运用试验技术与回归分析方法,对龙胆草微波真空干燥模型进行研究。分析了干燥因素(微波强度、真空度及初始含水率)与干燥速率的关系,根据实验数据及曲线建立了龙胆草微波真空干燥的水份比与干燥时间关系的动力学模型。最后通过实验对模型进行数据拟合检验,结果证实所建立的干燥模型预测数值与试验实际测得数值拟合良好,该干燥模型可以预测龙胆草在微波真空干燥过程中的含水率,可为龙胆草微波真空连续干燥设备的设计提供理论依据和技术支持。  相似文献   

4.
为了提高名贵木材刺猬紫檀的材干燥质量,以刺猬紫檀锯材为对象,采用热泵系统对锯材进行除湿干燥同时对其干燥特性进行分析,从而进一步优化干燥工艺。研究中重点分析了干燥过程中的干燥曲线、含水率、含水率偏差、干燥应力、干缩率等影响干燥质量的因素,并借助CT无损扫描技术建立了锯材含水率与CT值的数学模型,利用模型直观表征锯材分层含水率对干燥质量的影响。在此基础上进行干燥等级评定,进而优化刺猬紫檀材的干燥工艺。结果表明,刺猬紫檀材基本密度为0.84g·cm~(-3),弦向干缩系数为0.42%,径向干缩系数0.32%,体积干缩系数0.58%。刺猬紫檀干燥过程中锯材厚度上含水率偏差较大,应力梯度较大,采用较慢的干燥速率。通过建立CT值与分层含水率的线性回归方程y=0.149 8x+18.907 R~2=0.990 3,实现木材干燥过程中应力的变化与干燥质量的可控性,获得优化的干燥工艺:20mm厚、含水率42.2%的刺猬紫檀干燥528h后,其含水率达到10.24%,而且干燥质量达到GB/T6491-2012《锯材干燥质量》规定的一级要求。热泵干燥可有效减小干燥过程中的厚度含水率梯度及干燥残余应力,减少木材干燥产生皱缩、变形、表裂等缺陷。  相似文献   

5.
准确预测森林细小死可燃物含水率对提高森林和草原火险预测精度具有重要的科学意义。以大兴安岭林区兴安落叶松-白桦(Larix gmelinii-Betula platyphylla)混交林、兴安落叶松林(Larix gmelinii)、蒙古栎林(Quercus mongolica)和草甸细小死可燃物为研究对象,确定影响林内t时刻可燃物含水率变化率的影响因子(林外t-1时刻的气温变化率、相对湿度变化率和累计降水量变化率),根据统计回归理论建立细小死可燃物含水率变化率模型,进而构建大兴安岭林区典型森林和草甸细小死可燃物含水率预测模型。结果表明:兴安落叶松-白桦林混交林、兴安落叶松林、蒙古栎林和草甸细小死可燃物含水率预测模型准确率分别为91.1%、90.0%、91.0%和81.0%(相对误差不超过5%),可燃物含水率预测模型预测效果良好,模型具有较好的实用性,可为大兴安岭林区的森林火险预警提供理论和技术支持。  相似文献   

6.
选取杨木作为试材,有效避免了以往木材干燥过程中出现的木材含水率检测点数量有限,不能连续全面地描述木材含水率分布状态的问题,使用选择离散点数据的方法,再应用粒子群算法优化支持向量机算法、支持向量机预测算法、最小二乘法非线性拟合方法以及进行空间数据预测来比较算法预测能力,然后把木材干燥过程中的材堆模型模拟成长方体并建立空间模型,应用PSO优化的SVM算法对X坐标轴建立函数模型进行验证。通过数据分析比较可得:基于PSO优化SVM算法在针对同一试材上空间离散木材含水率采集数据进行空间数据预测仿真出的连续含水率曲线误差最小,仿真曲线逼近真实含水率分布曲线。  相似文献   

7.
木材干燥应力数学模型   总被引:3,自引:0,他引:3  
用切片法对木荷的干燥应力进行测试。用回归分析和聚类分析建立了干燥应力的数学模型。通过分析得出;木材弹性模量在干燥过程中不是常数,随含水率下降而增加;木材弹性应力和残余应力在厚度方向上的分布分别近似为四次多项式和二次多项式。应力的极值点发生在木材的表层和中心层,含水率应力与含水率之间近似为线性或二次多项式关系;木材干燥应力变化过程可分类三个阶段。  相似文献   

8.
为实时、快速、精准地检测基质含水率变化,利用高光谱检测技术,采用偏最小二乘回归法(PLSR),分析5种稻壳基质的反射光谱特征及其与基质含水率、基质破碎度间的关系,建立了基于高光谱检测技术的基质含水率快速预测模型,探索并分析了基质破碎度对模型预测能力的影响。结果表明,高光谱技术可以作为稻壳基质含水率的一种快速检测方法,基质光谱反射率随基质破碎度增大而增大,随基质含水率增大而减小;一阶微分处理(R')模型为基质含水率预测最优模型,对基质T2和T3的含水率预测精度最高,模型外部验证R2val≥0.88,RPD≥3.06,对基质T1含水率预测效果最差,模型外部验证R2val为0.60,RPD为1.67。基质破碎度介于25%至75%时,破碎度对基质含水率与R'相关性的影响不明显。  相似文献   

9.
采用微波真空干燥技术对青葱进行干制加工,研究了微波功率、装载量、真空度、物料层厚度等因素对青葱失水特性的影响,建立了青葱含水率随干燥时间变化的动力学模型.结果表明:青葱微波真空干燥过程具有升速、恒速和降速3个干燥阶段,其干燥速率随微波功率的增大、装载量的减少、真空度的增大而升高,且最佳物料层厚度为50 mm;青葱微波真空干燥过程符合Page模型,利用该模型可准确预测干燥过程中物料含水率及失水速率的变化情况.  相似文献   

10.
结合神经网络和粒子群算法(PSO)对油菜籽干燥工艺进行优化:采用BP神经网络建立油菜籽平均水分下降速率和发芽率与干燥温度、初始含水率、真空度之间的三层网络预测模型,利用试验样本数据计算并确定预测模型的网络权值及阈值,再采用PSO算法进行参数优化。试验验证结果表明,对比BP网络模型和PSO–BP模型,发现BP网络仿真值相对误差最大值为4.5%,而PSO–BP仿真值最大相对误差小于2.93%。  相似文献   

11.
间歇微波干燥过程中木材内含水率动态分布规律   总被引:2,自引:0,他引:2  
为研究微波干燥过程中木材内部的含水率动态分布规律,以红橡和南方松木材为研究对象,采用无损检测的X射线扫描方法,揭示间歇微波干燥过程中木材内部含水率分布的动态变化规律。结果表明:微波干燥的绝大部分时间内,木材厚度方向存在着整体性内高外低的含水率梯度场;随着干燥过程的进行,木材内部水分更趋均匀,当木材平均含水率在10%以下时,木材内水分分布非常均匀;在整个微波干燥过程中,木材内部虽然发现了部分内层含水率低于外层的情况,但并未出现与常规干燥相反的含水率梯度。  相似文献   

12.
大径级火力楠木材干燥特性和干燥工艺研究   总被引:1,自引:0,他引:1  
采用百度试验法研究木材干燥特性,利用小型木材干燥试验机分别对25 mm和40 mm厚锯材进行常规干燥试验研究锯材干燥工艺基准。结果表明,火力楠木材的百度干燥缺陷程度较轻,初期开裂等级为2,扭曲变形等级为2,截面变形等级为1,内裂等级为1;木材的干燥速度中等,等级为3。木材含水率为15%时的密度为0.679 g·cm-3,属中等。木材的差异干缩很小,干燥过程产生开裂的趋势较小。采用制定的干燥基准对锯材进行常规干燥,25 mm厚锯材从初含水率87.9%干至终含水率9.1%,干燥用时169.0 h (7.0 d),平均干燥速率0.47%·h-1;40 mm厚锯材从87.5%干至8.5%,干燥用时341.0 h (14.2 d),平均干燥速率0.23%·h-1。2种厚度干燥锯材的平均最终含水率、干燥均匀度、厚度上含水率偏差、残余应力以及可见干燥缺陷方面的指标,均达到了国家标准规定的锯材干燥质量二级及以上级别的要求。本研究编制的2种厚度火力楠锯材的干燥基准合理,可为实际木材的干燥生产提供科学依据。  相似文献   

13.
描述了用杉木Cunninghamia lanceolata制造杉木积成材的原料单元——杉木木束的高温对流干燥热质传递模型。建立了模型以纤维饱和点为界的木束内部水分迁移和热量迁移的数学方程。通过杉木木束高温干燥实验对模型的准确性和可行性进行验证。结果表明:数学模拟结果和试验实际测定结果相吻合,木束温度实测值与模拟值之间的相关系数的平方为0.97~0.98,木束含水率的相关系数的平方为0.96~0.99。用该模型来模拟木束的高温干燥过程具有较高的精度。图1参9  相似文献   

14.
以杉木Cunninghamia lanceolata人工林木材为研究对象,分别采用X射线扫描法和切片法研究了常规干燥过程中木材内含水率分布规律,以期检验X射线扫描法的测量精度,探讨采用X射线法动态检测干燥过程中木材内含水率分布的可行性。结果表明:在各个干燥阶段,X射线扫描法测得的厚度方向各层含水率测量值与用切片法得到的含水率测量值之间无显著差异(P>0.05),且两者之间相关的决定系数在0.90以上;在整个干燥阶段,切片法测量的每层含水率值大多低于利用X射线扫描法的测量值,在含水率较高阶段(55%,46%,34%),两者之间的差值大于含水率较低阶段(26%,20%,12%,8%)。由此可见,采用X射线扫描法测量干燥过程中木材内含水率分布是切实可行的。图1表1参13  相似文献   

15.
木材干燥是木材加工生产中不可缺少的一道重要工序,也是耗能最大的工序。现在能源短缺,燃料价格上涨,节省能源尤其重要。加强对木材干燥过程节能减排降耗的研究,寻求高效环保的节能技术是目前国内外学者广泛关注的课题之一。在分析木材干燥能耗的基础上,从3个方面探讨了木材含水率分级干燥的必要性:1)生材含水率不同导致每一块板材的干燥特性不同;2)与水分移动有关的木材性质(物理力学性质等)的差异;3)木材中各种状态水分的干燥能耗。进而对木材含水率分级干燥过程进行了分析,提出了木材含水率分级干燥的概念,并对分级干燥理论进行了分析。探究了含水率分级干燥对木材干燥质量、干燥效率和干燥过程节能减排的影响,采用含水率分级技术实现木材的精细干燥,可以达到缩短干燥周期,降低能耗,提高干燥质量的目的。最后,提出应根据干燥材的用途要求,在节能经济的基础上,制定合适的含水率分级标准的应用设想。  相似文献   

16.
为利用太阳能热泵干燥技术获得紫薯干燥最优工艺,采用三元二次通用旋转回归组合设计,探讨了装载密度、切片厚度和转换含水率3个变量对紫薯干燥时间、花青素保存率以及单位能耗的影响,根据试验数据建立可描述3个指标的二次回归模型,对变量进行响应面分析,并采用评价函数优化干燥工艺.结果表明:装载密度、切片厚度和转换含水率对紫薯干燥时间、花青京保存率以及单位能耗均有显著影响;紫薯太阳能热泵干燥最佳工艺参数为装载密度3.68kg·m-1、切片厚度5.84mm、转换含水率117.08%.  相似文献   

17.
为实现干燥过程中树盘含水率的在线精准检测,分析了环境温度对电阻应变式称质量装置测量精度的影响规律,获得了利用环境温度和电测质量计算精准质量的二元回归方程,并用其将树盘的电测质量校正为精准质量。用树盘绝干质量、干燥过程中在线测算的精准质量计算含水率实际值,对HYD-B型含水率仪进行了实验校正。探讨了纤维饱和点之下探针深度、间距、位置及材温补偿和介质温度补偿对含水率仪测量精度的影响规律,确定适宜的探针深度和间距,得到了适宜探针深度、间距下含水率测值的修正公式。结果显示:称质量装置测量精度的二元回归校正方程的相关系数达0.99;纤维饱和点以下,探针插入木材深度距离上表面为木材厚度的1/2~2/3、间距30 mm时,含水率仪检测精度高;材温补偿和介质温度补偿对检测精度影响不大,可用方便的介质温度补偿代替材温补偿。  相似文献   

18.
为探究在改变引入进出风口流速配比等因素下的木材中心含水率的变化情况,使用DesignModeler及NX10.0建立木材干燥域的三维流场模型,并通过结合CFD及正交试验方法,对单个木材在给定的多组试验工况下进行模拟,得到了试验各因素下最佳水平的参数组合。结果表明,合理地配置进出风口流速及气流温湿度对降低木材中心含水率有明显影响,为强制进排风干燥过程中控制干燥进程,通过平衡进出风口流速来调整木材(中心)干燥速率提供了理论依据。  相似文献   

19.
[目的]研究木材干燥过程的Elman神经网络模型。[方法]在人工神经网络理论的基础上,选用Elman神经网络建立木材干燥过程模型。针对木材干燥过程的特点,Elman神经网络利用木材干燥过程材堆的温度、湿度以及对应的木材含水率建立模型。[结果]通过实际干燥过程数据对模型的准确度进行验证,结果表明Elman神经网络利用少量数据就可以建立模型,并且模型预测精度高,对数据的联想记忆和优化能力强。[结论]Elman神经网络建立的木材干燥过程模型准确,对于提高木材干燥过程的控制水平具有重要研究意义。  相似文献   

20.
该研究根据微波真空干燥过程中木材内部水分和热量的迁移机理,建立了木材微波真空干燥的数学模型,并通过试验对该模型进行了验证。结果表明:木材的微波真空干燥过程可以分为3个阶段,即快速升温加速干燥段(Ⅰ)、恒温恒速干燥段(Ⅱ)和后期升温减速干燥段(Ⅲ),且恒温恒速干燥段在整个干燥过程中所占的比例较大;该模型能较好地模拟木材在微波真空干燥过程中的温度和含水率的变化规律,其模拟精度较高,模拟值与试验值之间相关系数的平方在0.9以上,且含水率变化规律的模拟精度高于温度变化规律的模拟精度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号