首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甘薯渣膳食纤维酶解法提取工艺研究   总被引:1,自引:0,他引:1  
利用α-淀粉酶、胰蛋白酶和糖化酶对甘薯渣进行酶解,提取膳食纤维,并对所得膳食纤维产品进行分析.试验结果表明,黄心甘薯是提取薯渣膳食纤维的理想材料;各种酶的最适用量分别为:α一淀粉酶1.2ml/g,胰蛋白酶0.7 ml/g,糖化酶4.0 ml/g;糖化酶最佳酶解条件为:酶解温度60℃,时间 40 min,pH值5.O;膳食纤维产品中总膳食纤维含量为81.43%,其中可溶性膳食纤维含量可达40.3l%,甘薯渣膳食纤维膨胀力和持水力分别达到195 ml/g和910%.  相似文献   

2.
酶解法提取红枣膳食纤维的工艺研究   总被引:2,自引:2,他引:0  
[目的]探讨红枣膳食纤维的酶法提取工艺。[方法]以陕北木枣为试材,采用酶解法提取红枣中的膳食纤维。通过对α-淀粉酶、胰蛋白酶和糖化酶的用量的正交试验,分析其对膳食纤维提取率的影响,确定其最适用量,进一步对α-淀粉酶酶解的温度、pH和时间进行正交试验,确定其最佳酶解条件。[结果]3种酶用量中,对膳食纤维提取率的影响最大的是α-淀粉酶,其最适用量为:α-淀粉酶0.4%、胰蛋白酶0.6%、糖化酶0.8%。α-淀粉酶的酶解因素中对提取率的影响依次为温度﹥时间﹥pH,其最佳酶解条件为:温度65℃,时间70 min,pH 6.0。在此条件下提取的红枣膳食纤维的持水力和膨胀力分别为854.92%和13.98 ml/g。[结论]该研究为酶法提取红枣中膳食纤维工艺的产业化提供参考依据。  相似文献   

3.
酶法制备葛渣水不溶性膳食纤维的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以加工淀粉后的葛根残渣(葛渣)为原料,用α 淀粉酶、糖化酶和蛋白酶进行水不溶性膳食纤维的制备,同 时测量膳食纤维的膨胀力.在单因素试验基础上,通过响应面分析得到酶法制备膳食纤维的最佳工艺条件:以5g 葛渣为原料,α 淀粉酶与糖化酶总用量75U,α 淀粉酶与糖化酶用量比例1∶8.5,60℃下酶解90min,中性蛋白 酶75U,45℃下酶解60min,该条件下水不溶性膳食纤维得率为52.33%,膳食纤维膨胀力5.76mL/g.  相似文献   

4.
以蓝莓果渣为原料,开展双酶法提取非水溶性膳食纤维及其性质研究,采用双酶法提取的非水溶性膳食纤维,通过单因素试验和正交试验对提取条件进行优化,确定最优提取条件为碱性蛋白酶浓度0.4%、碱性蛋白酶酶解p H值为8、α-淀粉酶浓度0.5%、α-淀粉酶酶解pH值为6;持水力为25.86±0.54 g/g,持油力为5.21±0.28 g/g,膨胀力为9.38±0.47 mL/g。  相似文献   

5.
马铃薯渣不同溶解性膳食纤维提取工艺条件的研究   总被引:1,自引:0,他引:1  
为更好地开发和利用马铃薯废渣,对马铃薯水溶性和水不溶性膳食纤维的提取分离工艺进行了研究。结果表明,α-淀粉酶酶解薯渣提取液中淀粉时水溶性膳食纤维提取液的最适pH值为6.5,酶液的使用量为每50mL提取液中添加20%的α-淀粉酶液1mL;活性炭脱色的最适条件为每50mL提取液中加入颗粒大小为60~80目的活性炭3.5g。对薯渣的护色处理有利于水不溶性膳食纤维的色泽改善及多酚物质的保存。  相似文献   

6.
利用苹果皮渣制备膳食纤维的工艺研究   总被引:3,自引:0,他引:3  
以苹果皮渣为原料,进行了酸水解法提取苹果皮渣中的水溶性膳食纤维,酶法和化学法提取水不溶性膳食纤维试验。结果表明,提取水溶性膳食纤维的适宜条件为:水解温度80℃,pH 1.5,水解时间150 min,加水比为12∶1,水溶性膳食纤维的得率为13.54%,成品呈浅黄色。酶法提取水不溶性膳食纤维的最佳工艺条件为:α-淀粉酶的添加量是0.4%,酶解温度为70℃,酶解时间为40 min,木瓜蛋白酶的添加量为0.2%,酶解温度为45℃,酶解时间为40 min,水不溶性膳食纤维的产率高达39.01%,膨胀力为27 mL/g,持水力为13.14 g/g。化学法制得的水不溶性膳食纤维的产率仅为23.30%,膨胀力为18 mL/g,持水力为2.6 g/g。  相似文献   

7.
【目的】建立酶法提取玉米芯膳食纤维方法,优化复合酶法改性玉米芯不溶性膳食纤维(IDF)制 备可溶性膳食纤维(SDF)工艺。【方法】以玉米芯为原料,通过单因素试验优化碱性蛋白酶、α- 淀粉酶和糖 化酶预处理提取玉米芯粗膳食纤维(TDF)条件,结合正交试验优化复合酶(纤维素酶和木聚糖酶)法改性 IDF 制备 SDF 工艺。【结果】生物酶法提取玉米芯 TDF 条件:料液比 1 ∶ 10、pH 9.0、1.4% 碱性蛋白酶 50 ℃酶解 60 min;pH 6.5、0.3% 的 α- 淀粉酶和糖化酶(1 ∶ 1)、60 ℃水解 60 min,IDF 得率为 69.35%。复合酶法改 性 IDF 最佳工艺为:pH 5.0、温度 50 ℃、纤维素酶 1.2%、木聚糖酶 1.2%、酶解时间为 6 h、料液比为 1 ∶ 10, SDF 得率可达 22.16%。处理后的 SDF 持水力为 6.55 g/g,膨胀性为 6.69 mL/g,持油力为 4.65 g/g,分别比改性前 提高 40.26%、48.67%、74.16%。【结论】复合酶法改性玉米芯 IDF 制备 SDF 得率较单一纤维素酶和单一木聚糖 酶处理的 SDF 得率高,且显著提高产物 SDF 的持水力、持油力和膨胀性。  相似文献   

8.
以红皮黄心红薯为原料,采用酶碱结合法制备膳食纤维,通过单因素和正交试验对制备工艺进行优化,并对所得膳食纤维产品进行分析。结果表明,酶解工艺中各种酶的最适用量分别为:脂肪酶0.5%,混合酶(中温α淀粉酶和糖化酶)0.6%,木瓜蛋白酶0.2%;碱解工艺的最佳条件为:p H 8.5,温度60℃,碱解时间1.5 h。在最优条件下,红薯膳食纤维得率可达66.31%,其中膳食纤维含量从原料中的24.21%提升至可溶膳食纤维产品中的83.74%,产品膨胀力为6.23 m L/g,持水力为9.33 g/g,持油力为3.96 g/g,功能特性优良。  相似文献   

9.
酶解法提取竹笋中不溶性膳食纤维研究   总被引:4,自引:1,他引:3  
州[目的]研究利用酶解法提取竹笋不溶性膳食纤维。[方法]采用正交试验设计对竹笋不溶性膳食纤维的提取条件进行了研究。[结果]各因素对竹笋不溶性膳食纤维提取影响程度依次为:α-淀粉酶〉酶解时间〉木瓜蛋白酶〉pH值〉料水比〉纤维素酶〉酶解温度;竹笋不溶性膳食纤维提取条件的最佳组合为:料水比l:40,α-淀粉酶1600U/g底物,木瓜蛋白酶3000U/g底物,纤维素酶4000U/g底物,pH值5.0,酶解温度55℃,酶解时间1.5h。[结论]筛选出了影响膳食纤维提取的主要影响因素,得到了竹笋膳食纤维酶解法的最佳条件,为进一步改良和优化膳食纤维的成分和生理功能提供了科学依据。  相似文献   

10.
甘薯渣是以甘薯为原料生产淀粉后的残渣,其中含淀粉50%左右。通过在甘薯渣粉中加入耐高温α\|淀粉酶、糖化酶和纤维素酶进行处理,然后分别对其进行保温和灭酶处理,再对糖化醪进行固液分离,浓缩得到液糖产品。经高效液相色谱(HPLC)分析发现其成分大部分为葡萄糖。利用正交试验初步得到了酶解的最佳工艺条件:料水比6%,淀粉酶加量12 U/g干物质,液化时间为60 min,糖化酶加量300 U/g干物质,纤维素酶加量0.5 U/g干物质,糖化时间为24 h。该方法工艺简单,专一性强,所得产品品质好,收率高,可有效解决甘薯渣严重污染环境的问题,且具有良好的工业应用前景。  相似文献   

11.
响应面法优化酶法提取麦麸膳食纤维工艺   总被引:2,自引:0,他引:2  
研究了酶法提取麦麸膳食纤维工艺.通过氨基态氮含量筛选了最适蛋白酶;可溶性糖含量分析了混合酶配比,最适pH和温度.然后以膳食纤维的持水性、得率为响应值,采用响应面法优化酶法提取麦麸膳食纤维的工艺.结果表明:木瓜蛋白酶为该工艺的最适蛋白酶;混合酶中α-淀粉酶与糖化酶质量最佳比值为1∶3,混合酶最适pH值为3.6,最适温度为45℃;响应面法优化工艺参数为蛋白酶用量0.4%,蛋白酶反应时间60 min,混合酶用量0.5%;混合酶反应时间30 min,持水性达到8.87714 g·g-1,得率达到71.6985%.  相似文献   

12.
韦琴  黄婉星 《安徽农业科学》2014,(19):6379-6381,6457
[目的]优化胡萝卜渣膳食纤维的提取工艺.[方法]采用单因素试验,确定酸提胡萝卜渣中水溶性膳食纤维的最佳工艺条件;用中性蛋白酶去除以上残渣中的蛋白质,通过单因素、正交试验,确定α-淀粉酶提取水不溶性膳食纤维的最佳工艺条件.[结果]胡萝卜渣中水溶性膳食纤维的最佳提取条件是:pH为3,水浴温度为90℃,水浴时间为80 min,最佳料液比为1∶10 g/ml,此条件下水溶性膳食纤维的提取率为5.42%;水不溶性膳食纤维的最佳提取工艺条件是:pH为6,水浴温度70℃,水浴时间60 min,加α-淀粉酶量0.6%,此条件下水不溶性膳食纤维的提取率为77.63%.[结论]该方法可为进一步优化膳食纤维提取工艺条件提供科学依据.  相似文献   

13.
以春笋为原料,以水溶性膳食纤维(soluble dietary fiber,SDF)提取率为考察指标,采用酶法与碱法相结合的方式,通过单因素及正交试验设计,优化春笋膳食纤维提取工艺,并对春笋膳食纤维的功能特性进行研究。结果表明:酶碱法提取春笋膳食纤维最佳工艺为α-淀粉酶用量0.5%,木聚糖酶用量0.4%,NaOH浓度0.6%,碱解时间120min,在此条件下春笋水溶性膳食纤维的提取率为12.70%,持水力为7.721g/g,膨胀力为7.963mL/g,持油力为3.368 g/g,对胆酸盐的吸附量为11.79 mg/g,亚硝酸钠的吸附量为39.87μg/g,具有良好的功能特性。  相似文献   

14.
α-淀粉酶和糖化酶协同酶解马铃薯淀粉的工艺条件优化   总被引:1,自引:0,他引:1  
【目的】探讨α-淀粉酶和糖化酶协同酶解马铃薯淀粉的工艺条件,为降低微藻生产生物柴油成本提供参考。【方法】采用α-淀粉酶和糖化酶协同酶解马铃薯淀粉,以葡萄糖含量为测定指标,选取反应温度、底物质量浓度、加酶量(m(α-淀粉酶)∶m(糖化酶)=3∶1)、反应时间4个影响因素,进行L25(54)正交试验,确定最佳酶解工艺条件;采用高效液相色谱法(HPLC)、电子扫描电镜(SEM)、X射线衍射(XRD)法对酶解产物的物理特性进行分析。【结果】最佳酶解工艺条件为:反应温度80℃、底物质量浓度0.1 g/mL、加酶量为干基底物淀粉质量的0.6%、反应时间4 h、反应pH 4.0,在此条件下,马铃薯淀粉水解液中葡萄糖含量最高,为802.9 g/L。HPLC、SEM、XRD测定结果表明,酶解产物中葡萄糖所占比例最高,酶解未破坏马铃薯淀粉晶型结构,酶解作用只在淀粉表面发生。【结论】得到了α-淀粉酶和糖化酶协同酶解马铃薯淀粉的最佳工艺条件,为微藻生产生物柴油提供了较好的碳源,节约了生产成本。  相似文献   

15.
【目的】探索商品化β-葡聚糖酶和多聚半乳糖醛酸酶共同水解甘薯淀粉加工废渣(简称甘薯渣)制备复合寡糖的最佳条件,并利用复合寡糖诱导大豆生成大豆抗毒素,为复合寡糖的工业化生产及应用提供科学依据。【方法】分别用商品化β-葡聚糖酶、多聚半乳糖醛酸酶水解甘薯渣,以温度、pH、底物浓度、酶添加量和反应时间为条件开展单因素试验,利用TLC和HPLC对酶解产物进行测定,分别以纤维二糖得率、果胶二糖和果胶三糖总得率为指标得到单因素试验的最佳条件,再通过复合酶共同水解甘薯渣制备复合寡糖,并对纤维寡糖、果胶寡糖以及复合寡糖这3种寡糖产物进行诱导大豆抗毒素活性评价。【结果】纤维寡糖制备的单因素试验结果表明,当温度40℃、pH3.5、底物浓度1%、β-葡聚糖酶添加量6.9×103 U•g-1甘薯渣膳食纤维、反应时间7 h时酶解效果最好,寡糖产物以纤维二糖为主,纤维二糖得率为100.6 mg•g-1(纤维二糖质量/甘薯渣膳食纤维质量),纤维二糖转化率为22.37%(纤维二糖质量/甘薯渣膳食纤维中纤维素质量)。果胶寡糖制备的单因素试验结果表明,当温度40℃、pH2.5、底物浓度1%、多聚半乳糖醛酸酶添加量1.42×104 U•g-1甘薯渣膳食纤维、反应时间4 h时酶解效果最好,寡糖产物以果胶二糖和果胶三糖为主,果胶二糖和果胶三糖总得率为17.43 mg•g-1(果胶二糖与果胶三糖的总质量/甘薯渣膳食纤维质量),果胶二糖和果胶三糖总转化率为29.9%(果胶二糖与果胶三糖的总质量/甘薯渣膳食纤维中果胶质量)。根据上述单因素试验结果优化复合寡糖制备条件,在温度40℃、pH2.5、底物浓度1%、β-葡聚糖酶添加量6.9×103 U•g-1甘薯渣膳食纤维、多聚半乳糖醛酸酶添加量1.42×104 U•g-1甘薯渣膳食纤维、反应7 h时,复合寡糖产物中以纤维二糖、果胶二糖和果胶三糖为主,纤维二糖得率为136.97 mg•g-1,纤维二糖转化率为33.57%;果胶二糖和果胶三糖的总得率为25.96 mg•g-1,果胶二糖和果胶三糖总转化率为44.53%,与单一寡糖制备结果相比均有明显提高。利用甘薯复合寡糖作为外源诱导剂诱导大豆生成大豆抗毒素,当复合寡糖浓度为1%,大豆在无菌水中浸泡5 h,诱导温度25℃、湿度50%、黑暗中培养4 d时,大豆抗毒素生成量达到最高,为1.21 mg•g-1干豆重。而在相同条件下纤维寡糖和果胶寡糖诱导得到的大豆抗毒素生成量分别为0.80和0.46 mg•g-1干豆重。结果表明,甘薯复合寡糖对大豆抗毒素的诱导效果优于单一寡糖。【结论】甘薯渣成本低廉,可作为制备复合寡糖的优良原料,试验得到制备复合寡糖的最佳工艺条件,以其制备的复合寡糖对大豆抗毒素的生成与积累具有极佳的效果。  相似文献   

16.
该研究以新鲜马铃薯为原料,通过单因素试验和正交试验确定了马铃薯饮料酶解的最佳工艺条件。结果表明,马铃薯饮料的最佳酶解工艺条件为:料液比为1∶2(g/mL),α-淀粉酶用量0.04%,糖化酶用量0.03%,酶解时间为2h,酶解温度为60℃,此时饮料的可溶性固形物含量最高。  相似文献   

17.
以蚕豆渣为原料,通过单因素试验和L9(34)正交试验得出用碱法和酶-碱法提取水不溶性膳食纤维的最佳工艺条件,并测定了2种方法制取的水不溶性膳食纤维的溶胀性和持水性。结果表明,碱法最佳工艺条件为:NaOH溶液浓度6g/100mL,碱浸温度50℃,碱浸时间40min;酶-碱法最佳工艺条件为:NaOH溶液浓度3g/100mL,碱浸温度60℃,碱浸时间50min,胰蛋白酶用量0.4g/100mL。酶-碱法制取的水不溶性膳食纤维具有较好的溶胀性和持水性。  相似文献   

18.
以酸浆(Physalis alkekengi)宿萼为试验材料,采用酶法酶解淀粉、蛋白质、脂肪等物质,提取可溶性膳食纤维,运用单因素试验和正交试验对酸浆宿萼中的可溶性膳食纤维提取的最佳工艺进行优化。结果表明,在综合考虑产物提取率、纯度和成本的前提下,最佳酶解提取工艺为在pH 6.5、酶解温度50℃、酶解12 h、醇沉30 min的条件下,原材料中添加纤维素酶5×104 U/g,α-淀粉酶5×102 U/g,木瓜蛋白酶1.2×103U/g,在此条件下得到的提取率为6.5%。  相似文献   

19.
[目的]去除猕猴桃皮和渣中的淀粉和蛋白质,提取并制备膳食食用果胶。[方法]通过单因素和正交试验设计,分别确定0.4%淀粉酶和0.4%胰蛋白酶提取猕猴桃皮和渣中果胶的适宜工艺条件。[结果]0.4%淀粉酶可有效去除猕猴桃皮和渣中的淀粉,其适宜工艺条件为:料液比1∶10.0,50℃下酶解60 min;0.4%胰蛋白酶可有效去除猕猴桃皮和渣中的蛋白质,其适宜工艺条件为:料液比1∶10.0,35℃下酶解60 min。在最佳工艺条件下,经离心、浓缩得到果胶,其中猕猴桃皮和渣中的果胶得率分别为3.10%和1.39%。[结论]通过改良酶法,建立了猕猴桃皮和渣中果胶提取的适宜工艺。  相似文献   

20.
[目的]研究麦麸膳食纤维的最佳提取条件,并探讨其添加量对面条面团黏弹性的影响。[方法]采用单因素试验和正交试验,研究α-淀粉酶浓度、NaOH浓度、碱解时间、碱解温度对麦麸膳食纤维持水性和溶胀性的影响;并考察麦麸膳食纤维添加量对面条吸水率、抗拉断应力和蠕变性的影响。[结果]添加0.4%的α-淀粉酶,于75℃酶解60 min,在提取条件为NaOH浓度5%、碱解时间60 min、碱解温度65℃时,所得麦麸膳食纤维具有良好的持水性和溶胀性;面粉中添加3%~5%的麦麸膳食纤维对面条吸水率、抗拉断应力、蠕变与蠕变恢复影响小,可制得富含麦麸膳食纤维的功能性面条。[结论]该研究为麦麸的综合利用与功能性产品的研究开发提供了有益参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号