首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过单因素试验和正交试验优化酸法和酶法提取香蕉皮果胶的工艺条件,并对它们的提取效果进行比较.结果表明,酸法的最佳工艺条件为:料液比1∶20、提取pH 1.0、提取温度70℃、提取时间90 min,果胶得率为16.57%;酶法的最佳工艺条件为:料液比1∶20、纤维素酶用量0.4%、酶解pH 5.0、酶解温度50℃、酶解时间40 min,果胶得率为17.47%;酶法明显优于酸法.  相似文献   

2.
韦琴  黄婉星 《安徽农业科学》2014,(19):6379-6381,6457
[目的]优化胡萝卜渣膳食纤维的提取工艺.[方法]采用单因素试验,确定酸提胡萝卜渣中水溶性膳食纤维的最佳工艺条件;用中性蛋白酶去除以上残渣中的蛋白质,通过单因素、正交试验,确定α-淀粉酶提取水不溶性膳食纤维的最佳工艺条件.[结果]胡萝卜渣中水溶性膳食纤维的最佳提取条件是:pH为3,水浴温度为90℃,水浴时间为80 min,最佳料液比为1∶10 g/ml,此条件下水溶性膳食纤维的提取率为5.42%;水不溶性膳食纤维的最佳提取工艺条件是:pH为6,水浴温度70℃,水浴时间60 min,加α-淀粉酶量0.6%,此条件下水不溶性膳食纤维的提取率为77.63%.[结论]该方法可为进一步优化膳食纤维提取工艺条件提供科学依据.  相似文献   

3.
酶解法提取红枣膳食纤维的工艺研究   总被引:2,自引:2,他引:0  
[目的]探讨红枣膳食纤维的酶法提取工艺。[方法]以陕北木枣为试材,采用酶解法提取红枣中的膳食纤维。通过对α-淀粉酶、胰蛋白酶和糖化酶的用量的正交试验,分析其对膳食纤维提取率的影响,确定其最适用量,进一步对α-淀粉酶酶解的温度、pH和时间进行正交试验,确定其最佳酶解条件。[结果]3种酶用量中,对膳食纤维提取率的影响最大的是α-淀粉酶,其最适用量为:α-淀粉酶0.4%、胰蛋白酶0.6%、糖化酶0.8%。α-淀粉酶的酶解因素中对提取率的影响依次为温度﹥时间﹥pH,其最佳酶解条件为:温度65℃,时间70 min,pH 6.0。在此条件下提取的红枣膳食纤维的持水力和膨胀力分别为854.92%和13.98 ml/g。[结论]该研究为酶法提取红枣中膳食纤维工艺的产业化提供参考依据。  相似文献   

4.
2种从苹果渣中提取果胶方法的对比研究   总被引:1,自引:1,他引:0  
白丽娟  李向东  王晓莹 《安徽农业科学》2011,39(31):19577-19579
[目的]探讨适合工业化提取苹果渣果胶的工艺。[方法]以同一苹果渣为原料,分别研究盐析法和醇沉法对苹果渣果胶提取的影响。[结果]醇沉法提取果胶的得率较高,为7.85%,且所得果胶纯度高,色泽好,质量优,其最佳工艺条件为酸提液pH 1.5,料液比1∶14,酸提时间1.5 h;盐析法提取果胶的得率为6.14%。[结论]醇沉法适合工业化提取苹果渣中的果胶。  相似文献   

5.
容元平  廖兰  伍时华  叶云  李克林 《安徽农业科学》2010,38(6):2793-2794,2797
[目的]研究木薯渣残余淀粉的优化提取工艺。[方法]利用α-淀粉酶对木薯渣中残余淀粉进行提取,再将提取液与木薯粉混合进行发酵酒精试验,主要考察固液比、液化保温时间、液化pH值、液化酶用量等因素对提取得率的影响。[结果]木薯渣残余淀粉最佳提取工艺条件是:固液比1∶12,液化保温时间65 min,液化浆料pH值5.8,液化酶用量40 U/g干渣。在此条件下从木薯渣(折干计)中提取得到的液化滤液中固形物得率是60.26%(固形物中含糖64%)。[结论]该研究方法显著降低了木薯酒精生产成本,并为有效利用木薯渣提供了新的途径。  相似文献   

6.
柴向华  唐忠盛  王胜利  吴克刚  潘显宗 《安徽农业科学》2012,40(24):12244-12246,12266
[目的]研究各种蛋白酶水解提取香菇可溶性含氮化合物,优化筛选胰蛋白酶酶解条件。[方法]采用各种食品级蛋白酶对香菇进行酶解,选取较优蛋白酶酶解条件,并结合螺杆挤压预处理提取香菇可溶性氮。[结果]胰蛋白酶提取香菇可溶性含氮化合物的最佳酶解条件为料液比1∶11 g/ml,酶解时间1.5 h,酶解温度50℃,酶量0.5%。在最优酶解条件结合螺杆挤压物理方法,可使香菇可溶性氮释放率及氨基态氮含量提高94.94%、82.94%。[结论]研究可为食用菌鲜味物质的提取利用提供参考。  相似文献   

7.
采用酸法提取毛酸浆果实中的果胶,同时考查了纤维素酶辅助酸法提取果胶的效果,比较了酸法及酶辅助提取果胶的得率及酯化度.结果表明;酸法提取果胶的最佳条件为:料液比1∶4、温度90℃、pH 2.0、时间80 min,在此条件下果胶得率为1.74%,果胶的酯化度为65.1%.纤维素酶浓度选择0.3%、酶解时间90 min,酶解...  相似文献   

8.
[目的]研究微波协同酶法提取巴戟天多糖的工艺条件。[方法]采用单因子试验和正交试验设计确定微波协同酶法提取巴戟天多糖的最佳提取工艺条件。[结果]微波协同酶法提取巴戟天多糖的最佳提取工艺条件为:料液比1∶40 g/ml、800 W微波处理时间2min、pH 5.0、酶用量0.10%、酶解温度40℃、酶解时间40 min,此工艺条件下多糖提取率为7.26%。[结论]微波协同酶法为巴戟天多糖提取的有效方法。  相似文献   

9.
张娜 《安徽农业科学》2012,40(35):17319-17321
[目的]优化黄秋葵果胶提取工艺。[方法]采用微波辅助酸解法从黄秋葵中提取果胶,以果胶得率为指标,通过考察酸的类型、酸解pH、微波时间、料液比等影响因素,确定黄秋葵果胶最佳提取工艺。[结果]试验得出,微波辅助酸解法提取黄秋葵果胶的最佳工艺条件为:硫酸、酸解pH为3、微波时间5 min、料液比1∶20 g/ml,在此条件下黄秋葵果胶的提取率为13.89%。[结论]以微波辅助酸解法获得的黄秋葵果胶品质符合国家标准,果胶提取率高,具有较好的经济效益和社会效益。  相似文献   

10.
超声辅助纤维素酶提取茶粕中茶皂苷的工艺研究   总被引:2,自引:0,他引:2  
[目的]优化茶粕中茶皂苷的提取工艺。[方法]在纤维素酶作用下,利用超声辅助,通过单因素试验与正交试验,研究料液比、酶解温度、酶解时间、酶的用量等因素对茶皂苷提取得率的影响。[结果]试验表明,茶粕中茶皂苷的最佳提取条件为酶解温度50℃,酶添加量0.3%,酶解时间70 min,料液比1∶20(g∶m L),在此条件下茶皂苷提取得率为9.769%。[结论]采用超声辅助纤维素酶提取,可有效提高茶粕中茶皂苷的提取得率。  相似文献   

11.
猕猴桃果实软化衰老机理初探   总被引:3,自引:0,他引:3  
吴炼  王仁才  张政兵 《安徽农业科学》2008,36(3):881-883,937
[目的]探讨猕猴桃果实软化衰老的机理。[方法]用1%、3%Ca(NO3)2处理丰悦和金魁,测定猕猴桃软化衰老过程中淀粉酶、纤维素酶、PG酶活性及果胶和淀粉的含量。[结果]丰悦采后60 d淀粉酶活性达到峰值,金魁采后40 d达到峰值,为4.57/mg FW,但均低于清水对照。两品种采后50 d PG酶活性达到峰值,纤维素酶活性20 d达到峰值,均低于对照。对照果实的水溶性果胶在开始阶段上升速度大于钙处理的,钙处理的金魁水溶性果胶含量在80 d时低于丰悦,表明丰悦果实软化速度大于金魁。两品种钙处理的猕猴桃果实淀粉含量高于对照。[结论]淀粉和原果胶的降解是猕猴桃果实软化衰老的主要原因。钙处理能降低猕猴桃果实淀粉酶和纤维素酶活性,降低PG酶活性的峰值,有效减缓淀粉降解,延缓猕猴桃软化衰老。  相似文献   

12.
以美味猕猴桃金魁和米良 1号为试材 ,对果实采后硬度、淀粉酶和多聚半乳糖醛酸酶 (PG)活性、淀粉和果胶含量的变化进行了研究。结果表明 :冷藏条件下 (0~ 1℃ ) ,两品种果实软化过程均分为两个明显的阶段。第一阶段果实硬度快速下降 ,此阶段与淀粉酶活性上升而引起的淀粉迅速水解呈正相关 (R =0 .99) ;第二阶段果实硬度下降趋于缓慢 ,此时PG活性提高 ,导致非水溶性果胶水解为水溶性果胶 ,果实细胞结构受损而软化  相似文献   

13.
白仲兰  桂文君  石辉文 《安徽农业科学》2010,38(33):19063-19065
[目的]以马铃薯淀粉渣为原料制备羧甲基纤维素(CMC)和羧甲基淀粉(CMS)混合物。[方法]采用溶媒法,以乙醇为溶剂,氯乙酸为醚化剂,研究醚化过程中各种因素对马铃薯淀粉渣制备CMC和CMS混合物的影响。[结果]马铃薯淀粉渣制备CMC和CMS混合物的最佳工艺条件:M精制原料∶MNaOH∶MClCH2COOH=1.0∶1.2∶1.6,以70%的乙醇溶液为溶剂,碱化温度30℃、时间60 min,醚化温度70℃、时间150 min。按最佳条件制得的CMC和CMS混合物产品各项指标为:黏度3.6-3.9 Pa.s;取代度0.5;pH值7.0-7.5;干燥减量8.0%-8.5%;氯化物含量0.14%-0.18%;铅含量0.001%;砷含量0.000 014%。[结论]在一定程度上解决了马铃薯深加工的环境污染问题,同时大大降低了CMC和CMS的生产成本。  相似文献   

14.
猕猴桃低糖复合果酱加工工艺   总被引:2,自引:0,他引:2  
[目的]优化猕猴桃低糖复合果酱加工工艺条件。[方法]以金艳猕猴桃、苹果、铁杆山药为主要原料,通过单因素试验和L_9(3~4)正交试验,以感官评价为指标优化了猕猴桃低糖复合果酱的制备工艺。[结果]根据正交试验优化分析,得出猕猴桃低糖复合果酱的最佳工艺条件为金艳猕猴桃60 g,苹果20 g,铁杆山药20 g,原料配比为3∶1∶1,白砂糖18%,柠檬酸8%,CaCl_20.2%,再配合复合增稠剂低甲氧基果胶0.6%和羧甲基纤维素钠0.1%,真空浓缩30~40 min并进行杀菌处理,制得的猕猴桃复合果酱色泽鲜明、味道可口、低糖、营养丰富、风味独特。[结论]该研究可为猕猴桃综合加工利用提供相关思路和开辟新途径。  相似文献   

15.
柑橘皮提取果胶试验条件研究   总被引:1,自引:0,他引:1  
姜楠  谈博雅  戴余军 《安徽农业科学》2008,36(14):5711-5712
[目的]探索提取果胶的最佳试验条件。[方法]以柑橘皮为试验原料,采用酸水解沉淀法提取粗果胶。[结果]在温度为85℃,柑橘皮:盐酸=18:,搅拌时间为45 min,pH=2.0,过滤后的酒精洗涤浓度为90%的条件下,粗果胶的得率最大。[结论]该研究所得到的最佳果胶提取条件可以为综合利用柑橘皮提供一定的试验依据。  相似文献   

16.
[目的]制备大米多孔淀粉,测定其吸附性能。[方法]以浸碱法自制的大米淀粉为原料,采用糖化酶、α-淀粉酶复合酶水解的方法制备大米多孔淀粉,以吸油率、比孔容及对桔子香精的缓释性能等指标评价大米多孔淀粉吸附性能。[结果]制备大米多孔淀粉的最佳酶解工艺条件为:反应温度35℃,时间16 h,pH 4.5,糖化酶、α-淀粉酶酶配比10∶1,底物浓度为0.2 g/ml,颗粒粒度40目。在此条件下制备的大米多孔淀粉吸油率最高,达到58.14%。[结论]大米多孔淀粉有较高的吸油率,较大的比孔容,较好的缓释桔子香精的功能,可作为多种物质的吸附载体并广泛应用。研究可为我国大米资源综合开发提供有效途径,并对我国的多孔淀粉工业化生产起到一定推动作用。  相似文献   

17.
肇实营养成分分析   总被引:1,自引:0,他引:1  
张素斌  许瑞兰 《安徽农业科学》2010,38(33):18780-18781
[目的]分析测定肇实的主要营养成分。[方法]对肇实中常规营养成分水分、粗脂肪、粗蛋白、总灰分、淀粉、可溶性总糖、果胶、粗纤维、总碳水化合物含量以及矿质元素Cu、Zn、Fe、Ca含量进行了测定。[结果]肇实常规营养成分水分、粗脂肪、粗蛋白、总灰分、淀粉、可溶性总糖、果胶、粗纤维、总碳水化合物含量分别为14.63%、0.10%、10.89%、0.50%、69.77%、0.35%、0.21%、0.49%、73.88%;矿质元素Cu、Zn、Fe、Ca含量分别为0.38、1.56、1.47、3.89 mg/100 g。[结论]肇实常规营养成分含量与一般谷类及其制品较接近,但矿质元素含量稍低于一般谷类及其制品。  相似文献   

18.
[目的]为莲藕产品的开发、工艺制定和品质控制提供理论依据。[方法]从特定品种的莲藕中分离纯化出莲藕淀粉,研究莲藕淀粉及其级分的颗粒特性。[结果]莲藕淀粉成分含量为:水分14.17%、灰分0.95%、粗蛋白0.34%、粗脂肪0.28%、总磷14.50 mg/100 g、直链淀粉24.76%。莲藕淀粉有圆形和椭圆形颗粒,其粒径分别为14.30、61.48μm。天然莲藕淀粉的晶体结构为B型,直链淀粉为V型,支链淀粉无明显晶体结构。天然淀粉及其级分的晶体崩解温度与起始玻璃化温度均较接近,但晶体崩解所需热量差别较大。莲藕淀粉的糊化温度为65.8~73.8℃。淀粉溶解度和膨胀度随温度的升高而增大。[结论]莲藕淀粉在95℃的膨胀度为24.497,属于中等膨胀型淀粉。  相似文献   

19.
小红豆淀粉颗粒性质研究   总被引:1,自引:0,他引:1  
[目的]为小红豆淀粉资源的开发提供理论依据。[方法]研究了小红豆淀粉的颗粒性质,包括颗粒的形貌、X光-衍射图样、溶解度与膨胀度,链淀粉含量、葡聚糖结构等,并与大红豆及荷包豆淀粉进行了对比。[结果]小红豆淀粉颗粒多为卵圆形,少数不规则,溶解度与膨胀度随温度变化程度不大,总体趋势平缓上升,X光-衍射呈现A型晶体图样,结晶度为18.01%,相对链淀粉含量为36.5%。[结论]该研究对于开发食用豆类淀粉资源具有启发作用。  相似文献   

20.
[目的]探究产淀粉酶菌种的分离纯化及培养条件。[方法]从土壤中分离到1株产淀粉酶能力较强的细菌A并分离纯化培养。[结果]细菌A在以淀粉为碳源的培养基上产淀粉酶能力最强,水解圈平均直径/菌种平均直径(R2/R1)为2.69;在以硝酸钠为氮源的培养基上产淀粉酶能力最强,R2/R1为2.69;p H在7.5时产淀粉酶能力最强,R2/R1为2.95。[结论]以淀粉为碳源、以硝酸钠为氮源、p H在7.5的培养基有利于细菌A产淀粉酶能力的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号