首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用BTB(溴甲基酚蓝)平板涂布分离法,从鳜鱼养殖池塘水体中分离出17株具有反硝化作用的细菌,通过初步筛选和反硝化能力的测定,挑选出一株具有较强反硝化能力的好氧反硝化细菌,命名为8F-3。菌株8F-3在24 h内将总氮从100.00 mg/L降至6.51 mg/L,去除率达到93.49%;将氨氮从50.000 mg/L降至1.966 mg/L,去除率为96.07%;将硝酸盐氮从50.00 mg/L降至3.51 mg/L,去除率为92.98%;将亚硝酸盐氮从0.096 mg/L降至0.071 mg/L,去除率为25.79%。该试验结果表明,菌株8F-3对氨氮和硝酸盐氮具有较强的去除能力,对亚硝酸盐氮也有一定去除作用,反硝化能力较强。经生理生化测试和16 SrRNA分子鉴定,初步鉴定该菌属于不动杆菌属(Acinetobacter)。  相似文献   

2.
【目的】针对养殖废水中的高浓度 NH4+-N 难处理的问题,从湖泊底泥中分离筛选出 1 株异养硝化细菌,并鉴定。【方法】对筛选菌株进行革兰氏染色、扫描电镜观察、菌株鉴定。16SrDNA 测序结果在 Blast 数据库进行同源性分析并构建系统发育树;研究不同氮源下,该菌株的异养硝化和好氧反硝化性能以及通过不同菌液接种量、碳源、初始 pH、温度、C/N、初始 NH4+-N 浓度为环境因素研究其脱氮特性;将该菌株投加到实际农村养猪废水中,评价其应用能力。【结果】筛选得到的菌株异养硝化菌株,鉴定为不动杆菌(Acinetobacter sp),命名为 L-1;单因素试验结果表明:菌株 L-1 在接种比例 2%、碳源为柠檬酸钠、pH 值 6~9、温度 20~30℃、C/N10~20、NH4+-N 初始浓度 50 mg/L 条件下异养硝化效果最好;在实际养猪废水中投加 L-1 进行脱氮,在96 h 时,其中 1 000 mg/L 的 NH4+-N 废水降至 298.46 mg/L,去除率达 70.15%,对比空白对照 NH4+-N 去除率提高 45.78%,其中 NO3--N 和 NO2--N 浓度均在下降。【结论】菌株 L-1 具有异养硝化和好氧反硝化能力,在异养硝化菌处理养猪废水研究方面具有一定的参考价值。  相似文献   

3.
1株畜禽粪便堆肥脱氨除臭菌的筛选及特性   总被引:1,自引:0,他引:1  
为了探索微生物除臭菌对畜禽粪便中氨气的处理效果,采用富集、平板划线分离法,从堆肥样品中共分离出25株菌株,通过氨气选择性培养基筛选出1株高效抑制氨气的菌株,命名为菌株YS1。根据形态学观察、内部转录间隔区(ITS)rDNA序列同源性比对、系统进化分析对菌株YS1进行多相鉴定,初步鉴定该菌株为尖孢镰刀菌(Fusarium oxysporum)。结果表明,菌株YS1接种到硝化培养基后反应96 h,NH~+_4-N含量从100.0 mg/L下降至9.4 mg/L,NH~+_4-N的去除率达90.6%,体系总氮削减率达58.6%。在反硝化培养基中反应96 h,NO~-_3-N的浓度由初始的99.3 mg/L下降为17.6 mg/L,降解率达82.3%,体系总氮削减率达35.4%。溶血性试验表明,YS1菌株无溶血性。  相似文献   

4.
为了获得高效的异养硝化-好氧反硝化菌株,采用稀释涂布和发酵检测的方法从土壤和污水中对其进行筛选,并通过分子生物学和形态观察方法对其进行初步鉴定。结果表明,从污水和土壤中成功分离筛选到SND104、SND305、SND205 3株同时具有异养硝化、好氧反硝化功能的菌株。对筛选菌株进行异养硝化和好氧反硝化功能的研究表明,异养硝化培养过程中菌株对培养基中铵态氮(NH+4-N)的去除率均达到80%以上,好氧反硝化培养过程中菌株对培养基中硝态氮(NO-3-N)的去除率均达到50%以上,并且在以上2个过程中总氮(TN)和化学需氧量(COD)的含量均降低50%以上。通过鉴定,SND104、SND305属于假单胞菌属(Pseudomonas),SND205属于戴尔福特菌属(Delftia)。  相似文献   

5.
[目的]通过在复合垂直潜流人工湿地系统中筛选高效的硝化细菌和反硝化细菌,以降低氮素污染对养殖水域生态系统的危害,为加强人工湿地氮素净化功能提供科技支撑.[方法]在复合垂直潜流人工湿地—池塘循环水养殖系统的不同运行阶段采集样品,利用选择性培养基定向筛选,选择一株高效硝化细菌和一株高效反硝化细菌,对其进行菌种鉴定,并分别研究对应菌株的硝化特性或反硝化特性.[结果]通过个体形态特征观察、生理生化鉴定及16S rDNA同源性比对分析,确定硝化菌株ZX2属于不动杆菌属(Acinetobacter),反硝化菌株ZF7属于假单胞菌属(Pseudomonas).在pH为7.0,温度为30℃,亚硝酸钠浓度为0.8 g/L的条件下硝化菌株ZX2的硝化能力最强,OD600可达0.80以上,硝化速率达68.4 mg/(L·d).在pH为7.0,温度为35℃,接种量为6%的条件下反硝化菌株ZF7的反硝化能力最强,OD600可达1.00以上,脱氮率达94.5%.[结论]筛选得到的硝化细菌和反硝化细菌具有很好的氮素净化效果,可为下一步强化人工湿地氮素净化功能提供备用菌株.  相似文献   

6.
为验证鸡粪好氧发酵过程同程硝化-反硝化细菌的存在,全程进行了高效同程硝化-反硝化菌株的分离、筛选,并对筛选的高效菌株进行鉴定和生物学特性研究.筛选到1株高效同程硝化-反硝化细菌JY45-2,鉴定为假单胞菌Pseudomonas sp.,为兼性化能自养型菌株.JY45-2菌株生物学特性为:当有机物质量浓度1 360 mg/L、氨态氮质量浓度212 mg/L、pH8、C/N为3.54和培养温度45℃时,氨态氮利用效率最高.JY45-2菌株的有机物耐受范围宽,有机物质量浓度为680~2 040 mg/L时,作用3 d后的氨态氮利用率可达30%以上.在鸡粪好氧发酵过程中分离、筛选到1株高效同程硝化-反硝化细菌,证明了该固态发酵体系中存在同程硝化-反硝化细菌.  相似文献   

7.
应用于景观水体异养硝化细菌的筛选鉴定及效果研究   总被引:1,自引:0,他引:1  
[目的]研究景观水体的生物修复技术。[方法]采用SBR反应器,通过间歇曝气方式对底泥体系中好氧反硝化细菌进行了选择和富集,分离到1株异养硝化菌,并根据其生理生化性状和部分长度的16S rDNA序列确定了分离菌株的分类学和系统发育地位。[结果]从底泥中分离出1株异养硝化细菌SHW1,经过生理生化鉴定和16S rDNA测序,建立了系统发育树,鉴定出细菌SHW1属于Acineto-bactersp.。采用乙酸钠-氯化铵培养基培养细菌进行硝化特性研究,经过7 d好氧培养,NH4+-N最终去除率为52.13%,并且具有产生NO2--N的硝化性能。[结论]筛选出的异养硝化细菌SHW1在贫营养条件下对NH4+-N有较高的去除率,可以应用于景观水体脱氮。  相似文献   

8.
从土壤中分离得到一株好氧反硝化细菌F6,该菌株在好氧条件下具有反硝化能力。亚硝酸盐氮初始浓度为250 mg/L时,该菌株在48 h内亚硝酸盐氮去除率为64.40%。通过形态学特征、生理生化特性及16S rDNA同源性比较对菌株F6进行鉴定,初步判断其为嗜碱副球菌(Paracoccus alcaliphilus)。  相似文献   

9.
反硝化细菌的分离筛选及其反硝化特性的初步研究   总被引:3,自引:2,他引:1  
从不同的水样、土样中用反硝化选择性培养基分离出202株反硝化细菌.以硝酸盐的降解、亚硝酸盐的积累和脱氮率为筛选指标,从这些菌株中得到1株反硝化能力强的菌株A13,经牛理生化试验和16s rDNA序列分析,鉴定该菌株为地衣芽胞杆菌(Bacillus licheni formis).然后将该菌株与保存的反硝化菌DNF409联合应用,脱氮率比应用单株菌提高近30%.在此基础上采用响应面分析法(中心组合一致精度设计,SAS9.1.3),建立了初始硝态氮浓度为25 mg/L水样脱氮率的回归方程,同时得出最佳反硝化条件是CODMn为35.1mg/L,温度为32.5℃,投菌量为6.2×106cfu/mL,反硝化时间为114.2 h,此时脱氮率达99%以上.  相似文献   

10.
【目的】筛选出能够耐高氨氮的异养硝化-好氧反硝化菌株,并研究菌株的脱氮特性和污水脱氮应用潜力。【方法】从渗滤液中富集筛选出耐高氨氮的异养硝化-好氧反硝化菌株;筛选菌株在不同初始氨氮质量浓度、碳源、碳氮比、pH条件下的最适脱氮条件,探究该菌株的脱氮特性和应用潜力。【结果】筛选出一株耐高氨氮的异养硝化-好氧反硝化菌株BJ17;经过形态学、16S rRNA基因序列比对,确定菌株BJ17为水生产碱菌Alcaligenes aquatilis;该菌株最适脱氮条件为初始氨氮质量浓度为1 000 mg/L、碳源为柠檬酸三钠、碳氮比为8、pH9,其氨氮去除率为90.92%,总氮去除率为83.4%。检测到菌株的氨单加氧酶、羟胺氧化酶、硝酸盐还原酶和亚硝酸盐还原酶活性。在实际污水处理中,9 h将市政污水的氨氮全部去除;在垃圾渗滤液脱氮试验中,添加柠檬酸三钠,216 h可将含量4 758.06 mg/L的氨氮去除61.38%。【结论】菌株BJ17是一株能耐高氨氮的异养硝化-好氧反硝化作用菌株,且在高氨氮污水处理中具有良好的应用前景。  相似文献   

11.
为探究溶氧(Dissolved orygen,DO)控制对异养硝化-好氧反硝化(Heterotrophic nitrification-aerobic denitrification,HN-AD)菌脱氮效力的影响,本文从绿狐尾藻人工湿地底泥基质中分离出高效HN-AD菌Alcaligenes faecalis WT14,通过室内和反应器装置试验,较系统地研究了WT14的HN-AD性能和不同DO条件对其NH_4~+-N、NO_3~--N去除能力的影响,并建立两级DO控制固定床反应器,通过DO控制分析了菌株WT14对养殖废水的处理效果。氮平衡试验表明,菌株WT14具有高效的同步硝化-反硝化能力,92.10%的NH_4~+-N以气态形式被去除,4.16%的NH_4~+-N被菌株WT14同化为胞内氮,同时NH_4~+-N的存在会促进NO_3~--N的还原。DO控制试验表明,菌株WT14的NH_4~+-N和NO_3~--N去除能力与DO浓度显著相关,低DO条件会抑制其NH_4~+-N去除能力,但是会促进NO_3~--N去除能力,且符合Boltzmann模型,其脱氨脱硝活性的半数DO抑制浓度分别为2.53 mg·L~(-1)和5.40 mg·L~(-1),最大NH_4~-N去除率和NO_3~--N去除率分别为94.0%和98.4%。在两级好氧(DO 4.00±0.30 mg·L~(-1))条件下,WT14对养殖废水的NH_4~+-N、TN和COD的去除率分别为99.3%、90.5%和97.5%,存在NO_3~--N和NO_2~--N的积累,而在连续好氧(DO 4.00±0.30 mg·L~(-1))-微氧(DO 0.50±0.10mg·L~(-1))条件下,WT14对养殖废水的NH_4~+-N、TN和COD的去除率分别为99.3%、97.6%和98.2%,且无NO_3~--N和NO_2~--N的积累。研究表明,两级DO控制中连续好氧-微氧显著促进了同步异养硝化-好氧反硝化菌WT14对NO_3~--N和NO_2~--N的还原,且不影响NH_4~+-N和COD的去除,提高了TN去除率。  相似文献   

12.
短程硝化反硝化工艺具有节省碳源、节省曝气量、污泥产量低等优点,但由于启动时间长、短程硝化效果不稳定等问题限制了其工程应用。针对此问题,本研究采用泥膜一体化工艺(IFAS)处理猪粪秸秆沼液,并考察了短程硝化反硝化工艺生物强化快速启动及稳定运行效果。结果表明,通过添加实验室自制氨氧化菌剂与反硝化菌剂,可在17 d内完成反应器的快速启动;稳定运行阶段,系统猪粪秸秆沼液有机负荷(COD)平均为1 040.0 mg·L~(-1)·d~(-1),好氧池平均NH_3-N负荷为110 mg·L~(-1)·d~(-1);好氧池平均NO_2~--N积累率为91.4%;COD、NH_3-N、TN平均去除率分别达到92.1%、97.0%、90.1%,且COD和TN的去除主要发生在缺氧池。分子生物学分析表明,整个运行过程中,好氧池生物膜氨氧化细菌(AOB)的丰度由0.003 6%上升至0.014 3%,增长至原来的4倍;亚硝酸盐氧化细菌(NOB)的丰度由0.004 8%下降至0,说明利用氨氧化菌剂、反硝化菌剂可快速稳定实现短程硝化反硝化脱氮工艺的启动。  相似文献   

13.
[目的]研究温度对矿化垃圾生物反应床脱氮能力的影响,为实现反应床对氮污染物的经济、高效处理提供指导。[方法]以埋龄为3年的矿化垃圾填充反应床,研究不同温度条件下反应床脱氮的效果和机理。[结果]30℃时脱氮效果最佳,出水中TN浓度为19.31mg/L,NH3-N近乎被全部去除,满足GB16889-2008的特别排放限值,而10℃时脱氮效果最差,出水中TN浓度为59.62mg/L,NH3-N浓度为54.22mg/L,远超出GB16889-2008的排放浓度限值;矿化垃圾反应床脱氮过程主要由亚硝化菌、硝化菌、好氧反硝化菌和厌氧反硝化菌四大类菌群共同作用完成,床内亚硝化菌群和硝化菌群合适的生长温度范围为15~30℃,床内多数反硝化菌群最适生长温度范围为30~37℃。[结论]温度对矿化垃圾生物反应床脱氮效果和其中的脱氮菌群影响显著,30℃为反应床运行的最佳温度。  相似文献   

14.
1株光合细菌的分离鉴定及其脱氮能力研究   总被引:1,自引:0,他引:1  
席寅峰  张孟婧  黄小帅  郝燕佳 《安徽农业科学》2010,38(27):14847-14849,14875
[目的]为光合细菌应用于生产实践提供技术资料。[方法]从宁波大学南门商贸街旁河道水体中富集到4株光合细菌,选取生长速度快、易纯化并具有脱氮功能的PSB-3为研究对象,对其进行了分离鉴定及脱氮能力鉴定,并进行了污水处理试验。[结果]PSB-3经常规方法和16SrDNA基因分析初步鉴定为红假单胞菌(Rhodopseudomonas sp.),比对显示与沼泽红假单胞菌(Rhodopseudomonas palustris)和粪红假单胞菌(Rhodopseudomonas faecalis)相似性均达到98%。经测定,该菌脱氮效果明显。将该菌挂膜后配合氨氧化细菌、亚硝酸氧化细菌和反硝化细菌用于生活污水的处理试验,结果表明,4种菌混合作用使NH3-N、NO3--N、COD的去除率分别达到64.8%、63.3%和33.7%,比仅使用氨氧化细菌、亚硝酸氧化细菌和反硝化细菌混合菌的去除率分别提高了18.3%、8.1%和3.5%,而且该菌在氨氮的去除过程中有明显减少NO2--N积累的效果。[结论]分离鉴定了1株脱氮能力强的红假单胞菌PSB-3。 更多还原  相似文献   

15.
[目的]研究固体碳源及生物强化CAST工艺处理低C/N生活污水的效果。[方法]设2组CASS反应器,试验组投加玉米芯填料与生物强化菌剂,对照组不投加玉米芯和生物强化菌剂。试验运行阶段对进出水进行氨氮(NH_4~+-N)、总氮(TN)、化学需氧量(COD)等指标进行持续监测。试验后期,取挂膜填料与2反应器中的污泥进行电镜分析。[结果]从池塘底泥中筛选出3株具有高效反硝化作用的好氧反硝化菌,分别为假单胞菌(Pseudomonas sp.)、施氏假单胞菌(Pseudomonas stutzeri)、铜绿假单胞菌(Pseudomonas aeruginosa),对硝酸盐和亚硝酸盐去除率均在85%以上。电镜分析表明,固体碳源表面结构粗糙,孔隙内及表面附着大量的杆菌、球菌及丝状菌等微生物,生物量有明显的提高。试验组出水COD浓度维持在40.00 mg/L左右,NH_4~+-N的平均出水浓度由11.35 mg/L降至4.58 mg/L;平均出水TN浓度由24.74 mg/L降至12.11 mg/L。反应器运行20 d后,试验组污泥结构相对于对照组更加紧密。[结论]固体碳源及生物强化CAST工艺处理低C/N生活污水可行性强,发展前景广阔。  相似文献   

16.
通过两种类型共4组人工湿地装置的优化对比试验,分析电解强化潜流人工湿地(E-CW)在不同电压梯度下(0.5、1.0、1.5、2.0和2.5 V)自养反硝化阶段的脱氮性能的变化及微生物群落结构特征,考察电解对湿地系统的影响。结果表明,在1.5 V电压条件下,虽然E-CW耦合系统的NH4+-N去除率低于不加电解强化措施的CW湿地装置,但是E-CW系统的反硝化速率较高,使得TN去除率高,其中E-CW3的TN平均去除率为9.52%,显著高于CW1;E-CW4的TN平均去除率为45.66%,显著高于CW2。各湿地中共发现14个优势菌门和30个优势菌目,优势菌门中的变形菌门相对丰度最高并且在各湿地中均有分布,含有许多硝化细菌和反硝化细菌,对污染物的去除起重要作用;优势菌目中的红杆菌目(Rhodobacterales),鞘氨醇菌目(Chiti-nophagales),伯克氏菌目(Burkholderiales),懒杆菌目(Ignavibacteriales),Saccharimonadales和厚壁菌门中的芽孢杆菌(Bacillus)在E-CW中的相对丰度...  相似文献   

17.
[目的]反硝化细菌是原位生物修复地下水硝酸盐污染过程中起主要脱氮作用的微生物,通过好氧反硝化细菌去除灌溉农田地下水中的硝酸盐.[方法]将菌株NSA4接种于灌溉农田地下水中,检验其在实际地下水中的脱氮效果.总氮测定采用过硫酸钾氧化紫外分光光度法;氨氮测定采用纳氏试剂分光光度法;硝氮采用酚二磺酸紫外分光光度法测定;亚硝氮测定采用N-(1-奈基)-乙二胺分光光度法.[结果]加菌处理地下水中的NO3--N的去除率要比未加菌处理对NO2--N的去除率高10;~40;,加菌处理对地下水中的TN的去除率要比未加菌处理对TN的去除率高10;左右.[结论]好氧反硝化细菌对于农田灌溉地下水脱氮效率具有显著的改善能力,在未来的地下水处理中具有一定的应用价值.  相似文献   

18.
为获得减少稻田N_2O排放的合适灌溉模式和施氮管理,通过大田试验,研究了不同灌溉方式和施氮处理对生育期内稻田N_2O排放通量和不同时期土壤无机氮含量和硝化-反硝化细菌数量的影响,并分析了采样当天稻田N_2O排放通量与无机氮含量和硝化-反硝化细菌数量的关系。试验设3种灌溉方式,即常规灌溉(CI)、"薄浅湿晒"灌溉(TI)和干湿交替灌溉(DI),以及2种施氮处理,即全部施用尿素(RN1)和50%尿素+50%猪粪(RN_2),2种施氮处理氮用量相同。相同施氮处理下,TI模式可以降低稻田N_2O排放;DI和TI模式土壤无机氮含量、硝化细菌数量和亚硝化细菌数量较CI方式高,而CI和TI模式土壤反硝化细菌数量较DI模式高。相同灌水模式下,RN1处理可显著降低稻田N_2O排放,且RN1处理土壤无机氮含量、硝化细菌数量、亚硝化细菌数量和反硝化细菌数量较RN_2处理低。稻田N_2O排放通量与土壤反硝化细菌、硝化细菌数量和NH_4~+-N含量之间均呈极显著正相关关系(r≥0.309,P0.01),且土壤NH_4~+-N含量与硝化细菌数量和反硝化细菌数量之间也均呈极显著正相关关系(r≥0.555,P0.01)。因此,"薄浅湿晒"灌溉和尿素处理可以降低稻田N_2O排放,且稻田N_2O排放通量受到土壤NH_4~+-N含量、反硝化细菌数量和硝化细菌数量的综合影响。  相似文献   

19.
为探讨畜禽养殖污水高氨氮负荷处理过程中的温室气体排放,本试验对缺氧/好氧(A/O)中试工程处理猪场沼液过程进行采样,对温室气体特性及影响因素进行了监测分析。结果表明:A/O工艺CH4平均排放通量为1 454.76 mg·m-2·h-1,平均排放因子为0.85%,缺氧池排放占比最高,占总排放量的56.0%;N2O平均排放通量为101.25 mg·m-2·h-1,平均排放因子为0.64%,好氧池排放占比最高,占总排放量的87.1%。NO2--N的积累会促使N2O排放,但对CH4排放有抑制作用。硝化细菌和反硝化细菌的反硝化反应可能是猪场污水处理过程中N2O的主要排放途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号