首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为研究猪链球菌2型(S.suis2)对氟喹诺酮类药物的耐药机制,本研究采用PCR和基因测序的方法分析氟喹诺酮类药物耐药诱导菌株的gyrA和parC喹诺酮耐药决定区(QRDR).与亲本药物敏感菌株和自然耐药菌株相应的氨基酸序列对比,所有耐药诱导菌株GyrA QRDR均无特征性的氨基酸变异;而有62.5%耐药诱导菌株(5/8)的ParC QRDR在第83位氨基酸突变为赖氨酸.应用质子能驱动型外排泵抑制剂氰氯苯腙(CCCP)与氟喹诺酮类药物联合用药后,CCCP可以使耐药诱导菌株对药物的敏感性提高8倍~32倍.交叉耐药性结果显示,耐药诱导菌株获得了氟喹诺酮类药物交叉耐药.  相似文献   

2.
<正>肠杆菌科细菌对喹诺酮类药物耐药性日益加重,以往喹诺酮类的耐药研究多集中在染色体介导的靶位改变、膜通透性降低、外排泵亢进机制,质粒介导的喹诺酮类耐药鲜见报道。近年来出现一种质粒介导的喹诺酮耐药(plasmid-mediated-quinolone-resistance,PMQR)因子,是一种新的喹诺酮耐药机制。到目前为止发现3大类(qnr,aac(6′)-Ib-cr和qep A或oqx AB)由质粒介导的喹诺酮耐药类型。这些由质粒介导的耐药基因可以在菌间进行水平传  相似文献   

3.
本研究从主动外排机制、膜孔蛋白缺失及氟喹诺酮类药物作用靶位改变等几个方面探讨,临床分离的20株动物源性多重耐药大肠杆菌的耐药分子特征。实验结果表明,20株临床分离大肠杆菌gyrA83、gyrA87、parC80的突变率分别为95%、85%、55%。gyrA和parC共同突变的有11株,突变率为55%;20株多重耐药菌大肠杆菌普遍存在主动外排机制,主要介导对部分氨基糖苷类、四环素、氟苯尼考和氟喹诺酮类药物耐药,当添加外排泵抑制剂PAβN后多数菌株庆大霉素、新霉素、四环素、氟苯尼考及氟喹诺酮类药物的MIC都降低了2倍~256倍。利用建立的ELISA方法检测外排泵AcrA蛋白的表达水平,结果证实所有,临床分离菌外排泵表达都增高;20株分离大肠杆菌中,部分菌株缺失OmpC或OmpF蛋白,同时缺失这两个蛋白的只有3株。部分菌株OmpF蛋白条带附近存在有多重耐药相关蛋白(Mar)。本研究结果揭示多重耐药大肠杆菌对常用抗菌药物高水平的耐药表型是主动外排机制、药物作用靶位的改变、外膜通透性的改变及其它机制共同作用的结果。  相似文献   

4.
喹诺酮类药物是兽医临床治疗动物细菌性疾病一类常用抗菌药物,此类药物的广泛应用,使动物源大肠杆菌对其耐药性也随之逐渐上升[1].细菌对喹诺酮类药物的耐药机制主要是染色体介导的靶位改变、膜通透性改变和主动外排.近年来,质粒介导的喹诺酮类药物耐药(plasmid mediated quinolone resistance,PMQR)基因qnrA[2],qnrB[3]、qnrS[4]相继出现,aac(6’)-Ib-er和qepA这两种质粒介导的耐药基因也被证实[5-6].本试验通过微量肉汤稀释法,检测2009年鸡源大肠杆菌的耐药情况,选择耐喹诺酮类药物的菌株,采用PCR方法检测PMQR基因,以了解不同地区鸡源大肠杆菌中PMQR基因的流行情况.  相似文献   

5.
质粒介导喹诺酮类耐药(PMQR)基因的出现,迅速提高了细菌对喹诺酮类药物的耐药性,给临床细菌性疾病的治疗带来了严重的威胁。目前虽然认为喹诺酮类耐药基因(qnr)只引起低水平耐药,但低水平耐药性可使细菌数量达到出现突变所需的浓度,从而出现高水平耐药。因此,对质粒介导该类药物耐药机制的研究,及耐药基因的分子传播机制的研究不仅能指导临床合理用药,而且有助于控制耐药菌株的产生和传播。  相似文献   

6.
金黄色葡萄球菌氟喹诺酮的耐药抑制剂研究进展   总被引:1,自引:0,他引:1  
金黄色葡萄球菌是引起人和动物感染的一种重要病原菌,它可以对氟喹诺酮等多种抗菌药物产生耐药性,严重影响临床治疗效果。NorA蛋白介导的药物主动外排成为葡萄球菌对氟喹诺酮类药物耐药的重要机制,利血平等作为NorA外排蛋白抑制剂,可有效降低其耐药性的产生。CCCP等能量抑制剂可加强细菌对氟喹诺酮类药物的摄取量。文章从葡萄球菌对氟喹诺酮类药物耐药机制、耐药抑制剂作用途径和能量抑制剂影响等方面,简要介绍金黄色葡萄球菌氟喹诺酮的耐药抑制剂研究进展。  相似文献   

7.
四环素是针对细菌感染有很好疗效的广谱抗菌药物,但随着该类药物的广泛使用,已导致病原菌的耐药率逐渐升高,出现了多药耐药菌株,严重影响着感染性疾病的治疗效果。细菌对四环素类药物产生耐药性的机制主要有:外排泵机制、核糖体保护蛋白机制和酶灭活(钝化)机制,其中外排泵机制是引起细菌对四环素产生耐药性的重要机制。文章就四环素类药物外排泵的种类和作用等进行综述,以期为临床治疗和新药研发提供依据。  相似文献   

8.
近年来研究发现,金黄色葡萄球菌的NorA、NorB和NorC外排泵蛋白介导对氟喹诺酮类药物的耐药.本文采用临床分离的牛乳源环丙沙星耐药的金黄色葡萄球菌,通过建立的高效液相色谱法(HPLC-FLD),测定了临床分离的耐药、敏感菌及金黄色葡萄球菌标准菌株ATCC 29213对环丙沙星积聚量的差异,为临床检测通过外排泵介导的氟喹诺酮类药物耐药的金黄色葡萄球菌提供了方法学上的依据.  相似文献   

9.
<正>1998年L.MARTINEZ-MARTINEZ等[1]报道了质粒p MG252可使细菌对氟喹诺酮药的耐药水平提高,并将该喹诺酮类耐药基因命名为qnr基因。近年的研究结果表明,质粒介导的喹诺酮类药物耐药性是喹诺酮类药物耐药机制的重要组成部分,它主要包括:qnr机制,乙酰基转移酶aac(6')-Ib-cr修饰喹诺酮类药物的耐药机制以及qep A介导的主动外排  相似文献   

10.
分别用微量肉汤稀释法(CLSI规定的标准方法)和琼脂二倍稀释法测定了4种氟喹诺酮抗菌药(环丙沙星、恩诺沙星、氧氟沙星、甲磺酸培氟沙星)对临床分离的32株氟喹诺酮敏感的猪链球菌的体外最小抑菌浓度(MIC)和防耐药变异浓度(MPC),比较二者的关系;分别与利血平和氰氯苯腙(CCCP)联合用药,检测了各抗菌药突变选择窗(MSW)内富集的一步耐药突变株是否存在主动外排泵机制;采用PCR和基因测序的方法检测在不同药物突变选择窗内筛选出的猪链球菌一步耐药突变株的DNA回旋酶(gyrA和gyrB)和拓扑异构酶IV(parC和parE)耐药决定区(QRDR)的基因突变和氨基酸序列变化,探明猪链球菌耐氟喹诺酮类药物的作用机制,分析不同氟喹诺酮药物在抑制猪链球菌时的特点,为临床用药提供依据.结果显示:4种药的MIC90.值从小到大依次为环丙沙星=恩诺沙星<氧氟沙星<甲磺酸培氟沙星,MPC90.值从小到大依次为恩诺沙星<氧氟沙星<环丙沙星<甲磺酸培氟沙星,选择指数(MPC/MIC)除了环丙沙星为16外,其余药物均为2;只在环丙沙星的耐药突变窗内筛选到了耐药株,但其DNA回旋酶(gyrA和gyrB)和拓扑异构酶IV(parC和parE)耐药决定区(QRDR)没有碱基或氨基酸的突变;与利血平联合用药时检测到了外排机制.结论:环丙沙星在治疗猪链球菌感染时很容易筛选出一步耐药突变株,从而导致猪链球菌对其产生耐药性,耐药机制可能是由主动外排泵介导产生.  相似文献   

11.
Quinolone resistance is studied and reported increasingly in isolates from humans, food-producing animals and companion animals. Resistance can be caused by chromosomal mutations in topoisomerase genes, plasmid-mediated resistance genes, and active transport through efflux pumps. Cross sectional data on quinolone resistance mechanisms in non-pathogenic bacteria from healthy veal calves is limited. The purpose of this study was to determine the prevalence and characteristics of quinolone resistance mechanisms in Escherichia coli isolates from veal calves, after more than 20 years of quinolone usage in veal calves. MIC values were determined for all isolates collected as part of a national surveillance program on antimicrobial resistance in commensal bacteria in food-producing animals in The Netherlands. From the strains collected from veal calves in 2007 (n=175) all isolates with ciprofloxacin MIC ≥ 0.125 mg/L (n=25) were selected for this study, and screened for the presence of known quinolone resistance determinants. In this selection only chromosomal mutations in the topoisomerase type II and IV genes were detected. The number of mutations found per isolate correlated with an increasing ciprofloxacin MIC. No plasmid-mediated quinolone resistance genes were found. The contribution of efflux pumps varied from no contribution to a 16-fold increase in susceptibility. No correlation was found with the presence of resistance genes of other antimicrobial classes, even though all quinolone non-wild type isolates were resistant to 3 or more classes of antibiotics other than quinolones. Over twenty years of quinolone usage in veal calves in The Netherlands did not result in a widespread occurrence of plasmid-mediated quinolone resistance, limiting the transmission of quinolone resistance to clonal distribution.  相似文献   

12.
Quinolone resistance in Escherichia coli.   总被引:3,自引:0,他引:3  
Escherichia coli is an important pathogen of animals and humans that causes great financial cost in food production by causing disease in food animals. The quinolones are a class of synthetic antimicrobial agents with excellent activity against Escherichia coli and other Gram-negative bacteria used in human and veterinary medicine. Different quinolones are used to treat various conditions in animals in different parts of the world. All members of this class of drug have the same mode of action: inhibition of topoisomerase enzymes, DNA Gyrase and Topoisomerase IV. Escherichia coli can become resistant to quinolones by altering the target enzymes, reducing permeability of the cell to inhibit their entry, or by actively pumping the drug out of the cell. All these resistance mechanisms can play a role in high-level fluoroquinolone resistance, however target site mutations appear to be most important. As all quinolones act in the same way resistance to one member of the class will also confer decreased susceptibility to all members of the family. Quinolone resistant Escherichia coli in animals have increased in numbers after quinolone introduction in a number of different case studies. The resistance mechanisms in these isolates are the same as those in resistant strains found in humans. Care needs to be taken to ensure that quinolones are used sparingly and appropriately as highly resistant strains of Escherichia coli can be selected and may pass into the food chain. As these drugs are of major therapeutic importance in human medicine, this is a public health concern. More information as to the numbers of quinolone resistant Escherichia coli and the relationship between resistance and quinolone use is needed to allow us to make better informed decisions about when and when not to use quinolones in the treatment of animals.  相似文献   

13.
Mechanisms of quinolone resistance in Salmonella.   总被引:2,自引:0,他引:2  
As in other Gram-negative bacteria, mechanisms of resistance to quinolones in Salmonella include target gene mutations, active efflux, and decreased outer membrane permeability. However, the exact contribution of these individual mechanisms to resistance, which may nevertheless interplay to reach high-level resistance, has not yet clearly been defined as in other bacteria such as Escherichia coli. This paper reviews the current state of knowledge of quinolone resistance mechanisms in Salmonella by comparison with that of E. coli and future directions of research with particular attention to the recent development of efflux pump inhibitors as possible means of avoiding the emergence and spread of fluoroquinolone resistance.  相似文献   

14.
Quinolones (QLs) are synthetic antimicrobials and widely used to treat clinical bacterial disease in the world. Quinolones trap DNA gyrase or topoisomerase Ⅳ to form reversible drug-enzyme-DNA complexes and prevent protein synthesis,resulting in bacteriostasis. Recently, the analysis of crystal structures of cleaved complexes and building of the model of noncatalytic magnesium ion present a reasonable explanation for the phenomenon of the effect of quinolones antibacterial activity. There are many researches for the mechanisms of resistance of quinolones, gene mutation, altered drug permeation and plasmid-mediated quinolone resistance are three main aspects. Here, the molecular basis for the antibacterial action and mechanisms of resistance of quinolones were fully discussed and updated, so as to provide a large number of information for optimization of quinolone antimicrobials based on structural transformation.  相似文献   

15.
喹诺酮类药物(quinolones,QLs)是一类化学合成的抗菌药物,曾在世界范围内广泛应用于临床细菌病的治疗。其作用靶点为细菌DNA螺旋酶和拓扑异构酶,形成药-酶-DNA三元复合体,阻止蛋白质合成,从而达到抑菌效果。目前,通过对许多三元复合体的晶体结构解析,以及非催化镁离子模型的建立,进一步合理地解释了喹诺酮类药物活性受到影响的现象。临床常见致病菌对喹诺酮类药物产生耐药现象的机理研究较多,主要是基因突变、膜对药物的通透性改变及质粒介导的喹诺酮耐药性(PMQR)3个方面。文章主要对喹诺酮类药物的作用机制和细菌耐药机理进行综述,以期为后期喹诺酮类药物结构优化提供更多的信息支持。  相似文献   

16.
Proteus spp. are widely recognized as opportunistic pathogens causing urinary tract and septic infections in humans and animals. The aim of this study was to investigate the prevalence of plasmid-mediated quinolone resistance genes and mutations in the quinolone resistance determining region in association with the detection of quinolone susceptibility of 24 strains of pet turtle-borne Proteus spp. Susceptibility of 4 antimicrobials including nalidixic acid, ciprofloxacin, ofloxacin, and levofloxacin was examined by disk diffusion and minimum inhibitory concentration test. Six isolates were resistant to nalidixic acid showing either intermediate resistance or resistance to other quinolones. All nalidixic acid, resistant isolates harbored mutations in gyrB (N440T/A401G/Q411S). Two of the isolates had both gyrA (S83I) and parC (S80I) mutations. Twenty-one isolates were positive for the presence of plasmid-mediated quinolone resistance genes; the qnrD gene had the highest prevalence with 19 (79.2%), while qnrS, qnrA, qnrB, and aac(6′), Ib-cr genes were present in 9 (37.5%), 2 (8.3%), 1 (4.2%), and 11 (45.8%) isolates, respectively. These results suggest that pet turtle-associated Proteus spp. should be considered a potential source of antimicrobial resistance determinants.  相似文献   

17.
外排泵抑制剂小肽1号对抗菌药抗菌活性的影响   总被引:1,自引:0,他引:1  
为了观察外排泵抑制剂小肽1号对抗菌药抗菌活性的影响,本试验采用标准微量稀释法,测定了6类8种抗菌药单用和与小肽1号联用对12株临床分离鸡大肠杆菌的MIC值。结果表明,12株鸡大肠杆菌中有9株为产超广谱酶的多重耐药菌株,小肽1号(1∶2)使恩诺沙星等8种药物的抗菌活性多数增强2倍,使氟苯尼考对A8、A15的抗菌活性增强了4倍,小肽1号(1∶2或1∶4)使恩诺沙星、甲替沙星、环丙沙星的抗菌活性增强2倍,使左旋氧氟沙星对A13的抗菌活性增强4倍。以上结果表明,细菌外排泵抑制剂-小肽1号对大多数药物的抗菌活性有一定的增强作用,产酶多重耐药的鸡大肠杆菌至少同时存在产ESBLs、外排泵两种耐药机制。  相似文献   

18.
为了解副猪嗜血杆菌对喹诺酮类药物的耐药现状,制定副猪嗜血杆菌对喹诺酮类药物的流行病学临界值,本试验根据CLSI-VET中规定的方法,对ScienceDirect、PubMed、中国知网等数据库中副猪嗜血杆菌对喹诺酮药物的耐药数据进行收集,共收集到605株环丙沙星、74株氧氟沙星、322株左氧氟沙星、211株达氟沙星、276株萘啶酸、143株洛美沙星、638株恩诺沙星及262株马波沙星的最小抑菌浓度数据,进行数据修正后利用统计软件ECOFFinder进行整理拟合,得出MIC拟合直方分布图,确定了副猪嗜血杆菌对8种喹诺酮类药物的流行病学临界值和耐药率。8种药物中可用于兽医临床使用的药物为达氟沙星、恩诺沙星、马波沙星、环丙沙星;萘啶酸作为第1代喹诺酮抗菌药,已基本退出市场;另外3种药物不可用于兽医临床。通过调查研究得出副猪嗜血杆菌对氧氟沙星、萘啶酸、洛美沙星、左氧氟沙星、环丙沙星、达氟沙星、马波沙星、恩诺沙星药物的流行病学临界值分别为8、4、4、0.25、0.25、0.0625、0.0625和0.03125 μg/mL,说明目前野生型副猪嗜血杆菌对环丙沙星、达氟沙星、马波沙星和恩诺沙星这4种兽医临床可用药敏感性较高,临床推荐使用。文章得出的数据在国际交流频繁的时代普遍适用,在国内外缺乏相应药效学折点和临床折点时可作为敏感和耐药的判定标准,并为进一步制定临床折点,指导临床用药、延长喹诺酮药物的临床使用寿命奠定了基础。  相似文献   

19.
旨在阐明贵州某规模化鸭场临床疑似鸭霍乱的病原菌耐药性及毒力特征,通过细菌的分离鉴定、多位点序列分型(MLST)、ERIC-PCR同源性分析、药敏试验、动物回归试验、细菌全基因组测序以及基因组局部比较分析对分离株进行系统研究。结果显示,分离得到5株鸭源多杀性巴氏杆菌(PmCW1~5),均为A:L1 ST128型且同源性较高;分离株均对氨苄西林、阿莫西林、左氧氟沙星和林可霉素4种药物耐药,其中PmCW1还对环丙沙星低水平耐药;对强毒株PmCW1的全基因组数据分析显示,PmCW1中存在β-内酰胺类、喹诺酮类、四环素类、大环内酯类和多肽类等耐药基因,同时存在多药外排泵及多药耐药蛋白基因,耐药表型与耐药基因检测结果基本相符;PmCW1中存在的毒力基因总数为201个,主要是脂寡糖/脂多糖(LOS/LPS)、荚膜、黏附因子等编码基因;此外,还检测到IV型菌毛基因(ptfA、comE、hofB、hofC、vfr)、铁摄取相关蛋白基因(ccmABCEFhgbBCfurhscB等)以及部分外膜蛋白基因(ompP5等)等;PmCW1具有典型的A:L1型多杀性巴氏杆菌的特征。综上表明,本研究分离得到的ST128型鸭源多杀性巴氏杆菌目前鲜有报道,对其耐药性及毒力的研究可为鸭霍乱的临床用药及疫苗研发提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号