首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在模拟运输条件下,分析孔雀石绿(MG)及其代谢产物隐色孔雀石绿(LMG)在鳜体内的代谢规律。将体重为(20±5)g的健康鳜放入100μg/L MG药液中,分别药浴5 min、1 d和2 d后,于药浴后取样检测,发现鳜体内MG和LMG残留量随药浴时间增加而增加,药浴2 d的鳜在药浴后90 d仍有MG和LMG残留。采用100、200和400μg/L MG药浴2 d后,鳜体内LMG药峰浓度C_(max)分别为658.37、1 128.80和1 461.25μg/kg,鳜体内LMG的富集量随药浴浓度的增加而增加;400μg/L MG溶液药浴下鳜体内MG和LMG消除半衰期T_(1/2)分别为64.39和42.69 d,表观分布容积V_d为21.55和0.98 L/kg,清除率CL分别为0.232和0.016 L/d,体内平均驻留时间MRT分别为81.05和49.43 d。本研究结果表明,在运输条件下鳜体内MG和LMG消解较慢,易造成鳜中MG和LMG超标,建议加强鳜运输环节中MG的监管,确保鳜等水产品的质量安全。  相似文献   

2.
为了解孔雀石绿(MG)及无色孔雀石绿(LMG)在鳜体内的残留和消除规律,达到对MG的禁用监控,本实验将初始体质量为(15±5)g的鳜在1 000μg/L孔雀石绿中药浴1 min后,再转移到清水中养殖,采用液相色谱串联质谱法测定鳜肌肉组织中MG及LMG的残留量。清水养殖过程中,在0~6 h范围内,肌肉中MG的残留量急剧下降,到12 h降为(5.42±4.32)μg/kg。从12~30 h范围内MG的残留量呈现上升趋势,而随后逐渐降低,到240 h后残留量低于检测限(0.5μg/kg)。LMG在0~30 h范围内随时间波动式上升到(56.54±4.82)μg/kg。在30~72 h范围内LMG的残留量急剧下降至(3.40±6.82)μg/kg,而随后缓慢下降,到960 h后残留量低于检测限(0.5μg/kg)。本研究可为加强MG的监督和执法管理工作提供参考依据,为水产品质量安全风险评估提供技术支撑。  相似文献   

3.
研究了以全池泼洒的投药方式,孔雀石绿(MG)(池塘中MG的理论浓度为1 mg/L)及其主要代谢物隐性孔雀石绿(LMG)在斑点叉尾(Ietalurus punetaus)肌肉和皮肤以及养殖水体和底泥中的残留消除规律。采用高效液相色谱串联质谱法(HPLC-MS/MS)分析MG及其代谢物LMG在斑点叉尾体内及环境中的浓度水平。结果显示:肌肉、皮肤中MG于用药后第1天最高浓度分别为:(42.77±5.26)μg/kg和(6.36±0.11)μg/kg,消除半衰期T1/2分别为57.76 d、31.51 d;皮肤和肌肉中LMG分别在用药后第3天和第1天达到最高(502.27±20.43)μg/kg和(125.26±12.76)μg/kg,消除半衰期T1/2分别为33.01 d、38.51 d。这表明MG在斑点叉尾体内会迅速转化为LMG,且LMG残留在皮肤中的浓度大于肌肉中的浓度。养殖环境底泥中同时存在MG和LMG,以LMG为主,并且LMG呈现蓄积的趋势,在第360天出现最高浓度(5.92±1.23)μg/kg;水体中MG最高浓度出现在第1天,为(46.44±7.39)μg/L,随后急剧降至1μg/L左右,水体中几乎不存在LMG。  相似文献   

4.
为了解鳜(Siniperca chuatsi)食用含有孔雀石绿(malachite green,MG)的饵料鱼后,其体内MG及其代谢物无色孔雀石绿(leucomalachite green,LMG)的残留消除规律,以期为孔雀石绿的监管提供基础数据,本实验模拟了自然养殖条件,对饲养于池塘网箱中的鳜连续投喂10 d经1 mg/L MG溶液浸泡2 min后的鲮(Cirrhinus molitorella),投喂量为5%(m/m),于停药后0、6、12 h及1、3、6、10、15、20、30、40、50、70、90、120、150和180 d采集鳜肌肉样品,各采集点随机取6尾以上鳜,采用液相色谱串联质谱法测定鳜肌肉中MG和LMG的残留量。结果发现,阳性饵料鱼投喂结束后,鳜体内未检出MG,LMG残留浓度也较低,在0 h鳜肌肉中LMG的浓度为8.62μg/kg,随后缓慢降低,10 d时鳜肌肉中检测不到LMG。本研究表明,养殖过程中,阳性饵料鱼体内的MG会通过食物链传递给鳜,造成鳜体内LMG检出,建议执法部门对鳜的饵料鱼进行监控,以确保鳜的食用安全。  相似文献   

5.
为了解孔雀石绿及其有毒代谢产物无色孔雀石绿在鱼体中的蓄积与消除规律,达到对孔雀石绿的禁用监控,本试验对初始体重为12.42±2.18 g的欧洲鳗鲡进行0.1 mg/L药浴24 h,再转移到清水中养殖120d,采用高效液相色谱法测定血液、肝脏、肾脏和肌肉组织中孔雀石绿(MG)及其代谢物无色孔雀石绿(LMG)的残留。结果表明:在药浴开始阶段,肝脏、肾脏和肌肉中的MG含量迅速上升,肝脏、肾脏和血液于浸浴6 h时即达到最高平均值,分别为859.8±127.0μg/kg、589.2±40.0μg/kg和88.6±51.3μg/kg,肌肉于浸浴12h时达最高值(720.5±192.6μg/kg),随后含量下降。鳗鲡各组织中LMG高峰出现时间都晚于MG,血液、肝脏和肾脏中的LMG都是在浸浴12 h时,达到最高平均值,分别为1 135.0±376.4μg/kg、1 730.9±538.5μg/kg和238.9±105.5μg/kg;肌肉组织LMG的高峰出现时间更晚,是清水养殖3 d(72 h)时,为960.1±251.0μg/kg。血液中的MG消除最快,于清水养殖的第2天(48 h)检测不到残留。肾脏于养殖10 d(240 h)、肝脏于养殖45 d(1 080 h)时检测不到残留MG,而肌肉中的MG在养殖90 d时才检测不到。LMG在鳗鲡血液和肌肉组织中消除时间与MG相比显著延长,血液中的LMG消除时间是养殖90 d(2 160 h),而肌肉中于养殖120 d时,仍能检测到一定含量的LMG。除了肾组织在整个试验阶段和肌肉组织在浸浴过程中,所含平均MG比LMG高以外,其余情况下都是LMG平均含量明显高于MG平均值。本试验表明,可以通过对鳗鲡肌肉中的无色孔雀石绿残留的检测达到对孔雀石绿禁用的监控。  相似文献   

6.
建立了超高效液相色谱质谱联用法同时测定水产品肌肉组织中孔雀石绿和酰胺醇类抗生素残留的方法。样品经QuEChERS方法提取净化后,采用液相色谱-串联质谱测定,内标法定量。孔雀石绿(malachite green,MG)、隐色孔雀石绿(leucomalachite green,LMG)、氯霉素(chloramphenicol,CAP)和氟甲砜霉素(florfenicol,FF)在0.5~50.0 ng/mL质量浓度范围内线性良好(r≥0.999 4)。甲砜霉素(thiamphenicol,TAP)在2.0~100.0 ng/mL质量浓度范围内线性良好(r≥0.999 6)。MG、LMG、CAP和FF的检出限为0.1μg/kg,定量限为0.5μg/kg;TAP的检出限为0.4μg/kg,定量限为2.0μg/kg。MG、LMG、CAP和FF在0.5、2.0和10.0μg/kg加标水平时,加标回收率为72.0%~102.6%,精密度小于6.4%;TAP在2.0、10.0和50.0μg/kg加标水平时,其加标回收率为76.5%~95.4%,精密度小于5.1%。本方法适用于检测水产品中孔雀石绿类和酰胺醇类抗生素的残留,可为提升水产品质量安全水平提供技术支持。[中国渔业质量与标准,2020,10(1):60-67]  相似文献   

7.
对淡水水体和沉积物中孔雀石绿(MG)及无色孔雀石绿(LMG)的高效液相色谱串联质谱(LC-MS/MS)检测方法进行改进。主要对水及沉积物中孔雀石绿及无色孔雀石绿提取试剂进行优化探索,结果表明:二氯甲烷作为提取试剂提取效果最佳,两种待测物线性范围为0.20~100ng/mL,r~2≥0.999,空白水体在2.0、10、25ng/L 3个加标水平下的平均回收率为78.3%~88.8%,相对标准偏差(RSD)为1.2%~3.3%,检出限(LOD)和定量下限(LOQ)分别为0.20ng/L和0.40ng/L。空白沉积物基质在0.2、2.0、10μg/kg 3个加标水平下,平均回收率为78.9%~86.7%,RSD为0.6%~3.3%,检出限(LOD)和定量下限(LOQ)分别为0.020μg/kg和0.040μg/kg。该方法灵敏度高、选择性好,适用于淡水养殖环境水体和沉积物中MG和LMG的残留测定。  相似文献   

8.
以0.5 ppm的孔雀石绿浸泡3天再清水养殖的鲫鱼为研究对象,研究孔雀石绿(MG)及其代谢物隐性孔雀石绿(LMG)在鲫鱼肌肉及各组织中的分布及消除情况.在浸泡结束后的第0、7、14、21天,分别取鲫鱼肌肉、肾脏、肝胰脏、脾脏、血液、性器官,采用高效液相质谱法检测孔雀石绿及隐性孔雀石绿的浓度水平,并分析其在各组织中的分布情况及消除规律.结果表明,在浸泡结束后的第0天,孔雀石绿及隐性孔雀石绿主要蓄积在肌肉和肾脏,其孔雀石绿浓度分别为1043.86μg/kg、1618.05μg/kg;隐性孔雀石绿浓度分别为1650.62μg/kg、1228.32μg/kg.随着清水养殖实验的进行,孔雀石绿及隐性孔雀石绿在鲫鱼各组织中逐渐消除,到21天,肾脏、脾脏、肝胰脏、血液中均没有检测到药物残留,而肌肉和性器官中仍然检测到残留,孔雀石绿浓度分别为6.16μg/kg、3.3μg/kg;隐性孔雀石绿浓度分别为11.13μg/kg、5.49μg/kg.清水养殖21天,孔雀石绿及隐性孔雀石绿在肌肉中的消除率分别是99.4%、99.3%;在性器官中的消除率分别是90.8%、98.7%.  相似文献   

9.
为了准确评估渔业生态环境中的孔雀石绿(MG)及其代谢产物隐性孔雀石绿(LMG)的残留状况,建立了3种渔业环境基质(水体、底泥和底泥-水体混合物)中MG和LMG的高效液相色谱-串联质谱(HPLC-MS/MS)检测方法。通过考察不同前处理方法对不同基质中MG和LMG回收率的影响,优化仪器性能,确定了色谱和质谱分析条件。具体方法是:水体过滤后采用PRS固相萃取柱进行净化、富集;底泥采用乙腈-二氯甲烷(1∶1,v/v)提取,再旋蒸、富集;底泥-水体混合物用二氯甲烷提取后,采用PRS固相萃取柱净化、富集。采用Thermo C18色谱柱对待测物进行分离,以乙腈-0. 2%乙酸铵(1∶1,v/v)为流动相洗脱,电喷雾-多反应正离子监测模式监测,内标法定量。结果表明,3种不同基质中的MG和LMG在1~8 ng/m L范围内线性显著,其相关系数r~2值大于0. 999;加标回收率分别为90. 0%~104. 2%、79. 9%~90. 3%和74. 1%~86. 3%,相对标准偏差为3. 3%~5. 8%、4. 9%~8. 6%和3. 2%~8. 3%; MG的检出限(LOD,S/N=3)分别为0. 24 ng/L、0. 02μg/kg和0. 06μg/kg,定量限(LOQ,S/N=10)分别为0. 79 ng/L、0. 07μg/kg和0. 21μg/kg; LMG的检出限(LOD,S/N=3)分别为1. 14 ng/L、0. 17μg/kg和0. 12μg/kg,定量限(LOQ,S/N=10)分别为4. 72 ng/L、0. 56μg/kg和0. 39μg/kg。该法可应用于渔业环境中MG及LMG的定性定量检测,具有较好的实用性。  相似文献   

10.
为了解上海市场销售鳜(Siniperca chuatsi)渔药残留现状,于2018年4月-2019年3月,对上海市批发市场销售的72份鳜肌肉样,采用高效液相色谱法,分别测定孔雀石绿(MG)、硝基呋喃(NFs)、喹诺酮(4-Qs)以及亚甲基蓝(MB)四大类共10种药物。结果显示:孔雀石绿、隐色孔雀石绿以及呋喃唑酮、呋喃它酮无检出,呋喃西林、呋喃妥因检出样占样本量的50%,喹诺酮类占76.39%,亚甲基蓝占15.3%;呋喃西林的检出浓度为(0.49±0.03)μg/kg、呋喃妥因(3.51±2.27)μg/kg,诺氟沙星(25.52±10.36)μg/kg、环丙沙星(20.98±6.85)μg/kg、恩诺沙星(27.95±4.17)μg/kg、亚甲基蓝(120±14)μg/kg;呋喃唑酮类主要集中在10月份到次年4月份之间,喹诺酮类与亚甲基蓝则主要集中在4月份到10月份之间,环丙沙星全年可检出。结果表明:市售鳜肌肉中仍有部分禁用药物和限用渔药的残留,且不同药物残留表现出一定的季节性差异。  相似文献   

11.
通过对干燥剂、分散吸附剂的种类及质量进行对比及优化,对鲮体内孔雀石绿(MG)及其代谢物的分散固相萃取/高效液相色谱-串联质谱(Qu ECh ERS-HPLC-MS/MS)联用方法进行了优化。方法以乙腈为萃取溶剂,无水硫酸镁为干燥剂,乙二胺-N-丙基硅烷(PSA)与石墨化炭黑(GCB)为分散吸附剂,电喷雾正离子模式(ESI+),多反应监测模式,内标法定量。结果显示,无水硫酸镁对样品中水分干燥效果良好,50 mg PSA+10 mg GCB可达到净化效果。在优化条件下,MG和无色孔雀石绿(LMG)在1~50 ng/m L范围内呈现良好的线性相关,相关系数r分别为0.999 21和0.999 37;方法检测限(LOD,S/N=3)为0.5μg/kg。采用该方法对鲮空白样品进行检测及加标回收率的测定,在2.0、10、25μg/kg 3个浓度水平下,MG的加标回收率为82.5%~92.6%,LMG的加标回收率为84.6%~95.1%。将该方法用于鲮体内MG及LMG残留消除规律研究,得到MG和LMG的消除半衰期分别为13.6、178.3 h,表明MG在鲮体内消除相对较快,但是其主要代谢产物LMG消除缓慢,直到40 d后低于检测限。本研究可为鲮等水产品中MG和LMG的检测提供支持技术,为水产品质量安全监管提供参考数据。  相似文献   

12.
检测曾投放过孔雀石绿(MG)养殖池塘中水样MG和隐性孔雀石绿(LMG)含量,并以此数据为基础通过室内模拟实验研究了不同浓度LMG养殖水体中生长的罗非鱼(Tilapia)和淡水白鲳(Colussoma brachypomum)肌肉中的积累情况。结果显示:所选取的5个池塘中LMG平均含量为30.32 ng/mL,6个月前使用过孔雀石绿的5个鱼塘的养殖水体中仍有一定量LMG残留。室内模拟实验显示:在LMG初始浓度为1.00 ng/mL的养殖水体中,LMG在罗非鱼和淡水白鲳肌肉中积累浓度分别高达60.0 ng/g和70.8 ng/g;罗非鱼肌肉中脂肪含量为0.53%,淡水白鲳为0.75%,说明脂肪含量高的淡水白鲳更容易积累LMG。同时发现,罗非鱼和淡水白鲳积累LMG浓度与水体中LMG浓度成正相关。  相似文献   

13.
建立了液相色谱-串联质谱法(HPLC-MS)同时测定水产品中阿维菌素(AVM)、伊维菌素(IVM)及四种三苯甲烷类(孔雀石绿MG、结晶紫CV、隐性孔雀石绿LMG和隐性结晶紫LCV)残留的分析方法。样品中加入内标物,经乙腈提取,中性氧化铝固相萃取柱净化,净化后溶液用HPLC-MS分析,采用试剂线性曲线,AVM和IVM采用外标法,三苯甲烷类采用内标法定量。AVM和IVM在2.0~80μg/kg浓度内具有良好的线性关系;四种三苯甲烷类在0.25μg/kg~10μg/kg浓度内具有良好的线性关系。最低检出限分别为4.0μg/kg和0.5μg/kg,加标回收率在89.8%~113%之间,相对标准偏差(n=6)在1.4%~10%之间。  相似文献   

14.
研究了不同养殖环境下孔雀石绿在凡纳滨对虾(Litopenaeu svannamei)体内的残留和消除规律。试验对虾刚0.20mg·L^-1。的孔雀石绿溶液药浴2h后转移至室内或室外水泥池中用盐度为28的海水养殖,采用高效液相色谱一串联质谱法(LC/MS/MS)测定对虾头部和肌肉中的有色孔雀石绿(MG)及其代谢产物无色孔雀石绿(LMG)的残留量。结果表明,药浴2h时对虾体内孔雀石绿的残留量达到峰值,转入清水养殖168h,2种环境养殖对虾体内的孔雀石绿残留量均降低至检测限以下,孔雀石绿在对虾体内的消除速率是室外环境养殖的快于室内环境养殖,对虾头部快于肌肉组织,且MG的消除快于LMG。  相似文献   

15.
建立了用紫外和荧光检测器同时分析水产品中有色孔雀石绿和无色孔雀石绿的高效液相色谱法。有色孔雀石绿检测采用紫外检测器,波长588 nm;无色孔雀石绿采用荧光检测器,其激发波长265 nm,发射波长360 nm,流动相0.1 mol/L(pH4.5)的乙酸铵溶液∶乙腈(20∶80),流速1.5 ml/min。采用ZOBAX C18(250 mm×4.6 mm,5μm)色谱柱。加标量为10μg/kg和250μg/kg(有色孔雀石绿),回收率分别为60.2%和56.6%,相对标准偏差分别为10.1%和5.6%;加标量为2μg/kg和50μg/kg(无色孔雀石绿)时,回收率分别为95.2%和92.3%,相对标准偏差分别为10.8%和11.3%。该方法的最低检测限1.1μg/kg(孔雀石绿和无色孔雀石绿总量),可满足欧盟对水产品中孔雀石绿的检测要求。检测方法稳定,简便,灵敏度高,无需柱后氧化柱,适合同时进行水产品中有色孔雀石绿和无色孔雀石绿含量的检测。  相似文献   

16.
为了解我国水产品中氯芬新残留状况,本研究采用QuEChERS样品进行前处理技术,建立了鱼中氯芬新残留高效液相色谱-串联质谱检测方法,并利用该技术首次对采自5个省市13个品种128个鱼类样品中氯芬新残进行检测;分别参照欧盟规定的氯芬新在鲑中最大残留限量1 350μg/kg,以及在部分动物源性食品中最大残留限量20μg/kg,采用风险熵值法(RQ)进行氯芬新残留食用安全性风险分析。研究结果显示:氯芬新在0.5~100.0 ng/mL浓度范围内线性关系良好,线性相关系数(r2)大于0.995,检出限为1.0μg/kg。在1.0、2.0、5.0、50.0μg/kg四个添加水平上进行加标回收实验,平均回收率在79.16%~106.33%之间,相对标准偏差在1.63%~7.26%之间(n=6)。在鳙、鲤、鲫、鲟、虹鳟、鲢、鳊、鳜和大菱鲆中均未检出氯芬新残留,表明这些品种的鱼类氯芬新残留食用风险很小。在加州鲈、草鱼、大黄鱼和乌鳢中氯芬新最大残留含量分别为343.02、58.43、33.19μg/kg和1.38μg/kg,检出率分别为37.21%、29.41%、40.00%和16...  相似文献   

17.
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)测定水产品中孔雀石绿(MG)、结晶紫(CV)及其代谢物隐色孔雀石绿(LMG)和隐色结晶紫(LCV)残留量的快速、准确检测方法。该法在SN/T1768-2006快速检测方法的基础上,采用空白样品添加不同质量浓度标准溶液的方式绘制校准曲线,并以氘代孔雀石绿(D5-MG)和氘代隐色孔雀石绿(D6-LMG)为内标进行检测,从而大大提高了定量的准确性。结果表明,MG、CV、LMG和LCV4种待测物在0~10.0ng·mL^-1范围内线性关系良好(R〉0.99),方法检出限均为0.1μg·kg^-1。在加标量为0.5和1.0μg.kg-1水平下4种待测物平均回收率在92.1%~111.0%之间,测定结果的相对标准偏差为2.2%~9.5%。此外,该法在FAPAS国际能力验证中得以证实,改进后的方法快速且准确,能满足水产品出口检测要求。  相似文献   

18.
为建立鳗鲡肌肉中孔雀石绿代谢物隐性孔雀石绿染料残留标准物质的研制和定值方法,以一定质量浓度孔雀石绿对鳗鲡进行药浴给药,使孔雀石绿在鱼体内自然代谢,从而使鳗鲡体内含有隐性孔雀石绿残留。经均质、真空包装及辐照处理后,获得一批500个独立包装的的鳗鲡肌肉样本。采用超高效液相色谱-串联质谱法对该样本进行均匀性和稳定性检验,经8家独立实验室协同定值及不确定度评估,其特性值为2.82μg/kg,扩展不确定度为0.39μg/kg(k=2)。所建立的制备方法为染料残留鳗鲡基体标准物质的实验室制备提供了一种参考。  相似文献   

19.
恩诺沙星在日本鳗鲡体内残留消除规律研究   总被引:6,自引:0,他引:6  
采用高效液相色谱法检测日本鳗鲡肌肉、血清、肠、鳃和肝脏组织中恩诺沙星及其代谢物环丙沙星的残留。方法的日内和日间变异系数分别为1.86%和2.53%,标准添加回收率为(95±6)%;最低测量限为1.0μg/kg。用现场试验方法研究恩诺沙星在鳗鱼体内的代谢残留规律。对约50 g鳗鱼按9 mg/kg鱼体重每天给药2次,连续投喂7 d。给药期间鳗鱼体内的药物含量呈锯齿状上升,停药60 d后鳗鱼肠、鳃和肝脏组织中药物即下降至1~5μg/kg。肌肉和血清中药物残留到90 d,分别消除至3μg/kg和4μg/kg。所测组织的药物残留至停药120 d后降到检测限以下。故鳗鱼的停药期不应低于120 d。  相似文献   

20.
水产品中呋喃唑酮含量的高效液相色谱检测法   总被引:8,自引:1,他引:8  
在传统法基础上 ,研究了测定草鱼、鳜、对虾、中华鳖等水产养殖动物肌肉中呋喃唑酮残留的快速HPLC法。用二氯甲烷提取样品中的呋喃唑酮 ,浓缩提取液至干 ,用乙腈水溶液溶解残渣并去脂肪后过滤 ,清液供HPLC分析 ,草鱼、鳜、对虾、中华鳖等水产养殖动物肌肉中杂峰都能很好地与药物峰分离 ,方法回收率稳定在70 %~ 75 % ,日内精密度与日间精密度均小于 3% ,本方法可检出的样品中呋喃唑酮低限为 0 0 0 1μg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号