首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为解决河南中牟县万滩镇养殖池塘机械增氧技术单一的问题,通过试验研究微孔式、水车式、涌浪式等几种增氧机的性能及使用方式,以达到提升增氧效果和提高养殖效益的目的。结果表明,该地区池塘溶氧含量高而利用率低,养殖户传统增氧方法不当。适宜增氧方式为:涌浪式增氧机适合在晴天下午使用3~6 h,可有效提升周边20 m范围内底层水体的溶氧水平;投食前后半小时开启和关闭微孔式、水车式增氧机,可提升投食期间投饵区溶氧水平1~2 mg/L,保证鱼群的进食效果;夜间搭配使用微孔式和低功率叶轮式增氧机增氧,可使微孔区域底层水体溶氧比不增氧状态高出1 mg/L以上。  相似文献   

2.
液态氧在对虾工厂化养殖中的增氧效果   总被引:1,自引:0,他引:1  
试验结果表明,液态氧能使养殖水体持续维持较高的溶解氧(DO)含量(充气压力0.15 MPa,DO≥7.0 mg/L),且分布均匀,无DO分层现象.成本分析表明,液态氧增氧的成本略低于动力增氧.  相似文献   

3.
微孔管器水下曝气增氧技术   总被引:1,自引:0,他引:1  
水体溶氧是好氧水生生物赖以生存的必要条件,水体溶氧的多少,对水质的保持和水产养殖活动的顺利进行非常重要。有人测算,草鱼在溶氧含量为5.5mg/L的水体中生长比在2.7mg/L的水体中生长增肉率提高9.88倍,饲料系数降低5.5倍。为了提高养殖水体溶氧含量,许多地方正在推广微孔管器水下曝气增氧技术。本文就此进行粗略的研究  相似文献   

4.
微孔曝气增氧机的增氧能力试验   总被引:3,自引:2,他引:1  
为探究微孔曝气增氧机对氧气的传递效果,从研究增氧能力出发,依据SC/T6009-1999增氧机增氧能力试验方法的标准检测程序,以直径为10m的标准室内水池作为试验平台,试验水温为20℃、气压为101.325kPa、初始溶氧浓度为0mg/L;试验用水为清水,将微孔曝气增氧机与射流式增氧机进行对比试验研究。研究结果表明,微孔曝气增氧机能有效增加水体底部溶解氧,与1.5kW射流式增氧机相比,射流式增氧机的增氧能力平均值为2.4kg/h,微孔曝气增氧机布管长度为20m时,增氧能力平均值为0.25kg/h,布管长度为42m时,增氧能力平均值为0.40kg/h,布管长度为98m时,增氧能力平均值为1.12kg/h,布管长度为200m时,增氧能力平均值为1.55kg/h,所以在目前试验布管密度条件下,增氧能力可以超过射流式增氧机。在进气口压力相同的情况下,微孔曝气增氧机增氧速度随着布管长度增加而增加。  相似文献   

5.
盐度和溶解氧对刺参非特异性免疫酶活性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
测定了不同盐度(20、25、30、35、40)和不同溶氧水平(充空气,DO 7~9mg/L)充纯氧,DO15~20mg/L;不充气,DO 2~5mg/L)对刺参体腔液中酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、溶菌酶(LZM)和超氧化物歧化酶(SOD)活性变化的影响。盐度试验结果表明,盐度急性变化会引起刺参体腔液ACP、AKP、LZM活性的升高和SOD活性降低,其中第10天时盐度对酶活性的影响最大。溶氧试验显示,过饱和溶氧(DO 15~20mg/L)可使刺参体腔液ACP、AKP、LZM、SOD活性维持在较高水平,不充气组(DO 2~5mg/L)刺参体腔液中ACP、AKP、LZM活性出现短暂升高。恢复性试验中,盐度20、25组对AKP活性和盐度20、40组对SOD活性的影响未恢复到初始水平,其余实验组均能恢复至初始水平,说明低盐对刺参免疫力的影响较大。充纯氧组刺参的AKP活性显著高于充空气组,表明高溶解氧水平在一定程度上提高了刺参免疫力。  相似文献   

6.
研发一种大水体太阳能自动增氧装置,为大水体的缺氧、水体污染提供一种解决方法。太阳能自动增氧装置由太阳能光伏发电系统、检测与智能增氧系统、自动化驱动系统组成。光伏发电系统充分利用太阳能资源,解决了电能消耗问题;检测与智能增氧系统实现了增氧过程中氧溶解浓度检测和智能感应运行;自动化驱动系统通过智能感应信号和电子差速控制系统实现增氧机原地转向、转弯和直行3种运动模式的移动,增加了增氧面积。使用太阳能自动增氧装置增氧试验表明,80 min内1 m水深处溶氧量增加0.79 mg/L,2 m水深处溶氧量增加0.78 mg/L,3m水深处溶氧量增加0.77 mg/L,4 m水深处溶氧量增加0.78 mg/L;改善水质试验表明能有有效提高水体溶氧,降低氮磷含量;养殖试验表明,增加鲤产量35.3%、鲢鳙产量31.2%。  相似文献   

7.
池塘养殖增氧方式效果比较   总被引:2,自引:0,他引:2  
为了解微孔增氧对池塘水体能量流动、水质及养殖效益的影响,对2种不同增氧方式下3个河蟹养殖池塘的养殖周期(4—9月份)进行了水质测定,获得了池塘不同水层的水温、溶氧、氨氮、亚硝酸盐及高锰酸钾盐指数数据。结果表明,夏季高温时采用微孔管道增氧能有效降低表层、底层的温差,一定程度上降低底层水温。微孔管道增氧能有效增加水体溶氧,开机90min水体底层溶氧增加速率是普通增氧机的5倍;6—9月份采用微孔增氧的池塘水体较普通增氧,NO2-N低70﹪以上,NH3-N低22.9﹪以上,高锰酸钾盐指数低20﹪以上,取得了较高的经济效益。  相似文献   

8.
池塘底充式增氧设施的配置与应用   总被引:4,自引:0,他引:4  
为研究高效增氧方法,选择在凡纳滨对虾(Penaeus vannamei)和三疣梭子蟹(Portunus trituberculatus)生产性养殖池塘,进行底充式增氧设施的配置与应用研究.结果表明,底充式增氧方法比水车式和叶轮式增氧机的增氧效果明显.实际应用中微孔管和PVC管作为充气管,两者增氧效果基本相同,PVC管道更经济实用;充气管道的合理间距为4~6 m,鼓风机的功率配置0.30 kW/667 m2,可以满足水体溶解氧最低值3 mg/L的增氧要求.  相似文献   

9.
微孔曝气增氧技术采用微孔管道在池塘底部充气增氧,溶氧分布均匀,增氧区域范围广。在主机功率相同的情况下,微孔增氧机增氧能力是叶轮式增氧机的3倍。  相似文献   

10.
青虾微孔管道增氧双季养殖技术   总被引:3,自引:1,他引:2  
青虾,学名日本沼虾,是淡水水域中适应性强,分布广,食性杂,生长快的经济虾类,具有皮薄肉嫩,味道鲜美的特点.青虾对水质的要求较高,溶氧量>5 mg/L,氨氮浓度<0.15 mg/L,亚硝酸盐<0.15 mg/L,pH 7.0-8.0.近年来,利用标准化池塘配套微孔管道增氧设施进行集约化养殖,大幅度改善了养殖水质,取得了较好的养殖效果,青虾产量200~250kg/667 m2,效益在5 000元/667 m2以上,建立了青虾微孔管道增氧双季生态高效养殖模式.  相似文献   

11.
蛋白分离器对循环水养殖水质理化因子的调控作用   总被引:1,自引:0,他引:1  
通过测定5个关键水质理化因子,研究蛋白分离器对南美白对虾养殖水质的调控作用。结果表明:使用蛋白分离器后,水体的pH值维持在8.0~8.3,养殖水体中氨氮最高达到0.917mg/L,亚硝酸盐最高达到0.324mg/L,DO含量在3.775~6.300mg/L,COD含量峰值为14.27mg/L。  相似文献   

12.
精养虾池主要生态因子变化特点与相关性分析   总被引:2,自引:0,他引:2  
2011年4月至7月,对海南省儋州市排浦对虾养殖场3口凡纳滨对虾(Litopenaeus vannamei)精养池塘水体中的叶绿素a(Chl-a)、浮游动物、异养细菌、弧菌、活性磷(PO34--P)等16项环境因子进行全程定期测定,分析养殖过程中主要生态因子的变化特点及其相互关系。结果显示,养殖过程中水体的溶解氧(DO)、pH和透明度呈现缓慢下降的趋势,悬浮物(TSS)、化学耗氧量(COD)、亚硝酸盐氮(NO2--N)、氨氮(NH4+-N)、浮游动物、异养细菌和弧菌则呈现出逐渐增加的趋势。ρ(Chl-a)的变化特征表现为养殖前期低,中后期逐渐升高;Chl-a与硝酸盐氮(NO3--N)呈极显著的正相关,与PO34--P呈负相关。桡足类密度与TSS呈极显著的正相关,与异养细菌、弧菌、轮虫密度呈显著正相关,与Chl-a、COD呈正相关,但不显著。异养细菌与COD呈极显著的正相关,与TSS呈显著的正相关,与透明度呈显著的负相关;弧菌与TSS呈极显著的正相关,与COD呈显著的正相关,与pH、DO呈显著的负相关。  相似文献   

13.
2016年和2017年分别调查了位于浙江省绍兴市滨海新区的12口凡纳滨对虾围垦滩涂养殖池塘内的理化环境和浮游植物。结果显示:池塘内盐度变化范围为0~2,溶氧为6.2~13.9 mg/L,pH为7.5~9.8,总氨氮(TAN)为0.00~0.72 mg/L,亚硝酸盐氮(NO_2~--N)为0.00~1.70 mg/L,硝酸盐氮(NO_3~--N)为0.18~4.77 mg/L,总氮为1.74~6.08 mg/L,总磷为0.20~2.72 mg/L,总有机碳为1.88~42.57 mg/L,C/N为10~39。池塘内浮游植物种类隶属6门、24科、42属,其中蓝藻和绿藻为优势种。浮游植物生物量为(0.15~2.30)×107cell/L,叶绿素a(Chl.a)为2.62~37.24μg/L。Chl.a与蓝藻生物量显著正相关。NO_2~--N和NO3--N均与pH显著负相关。初步分析认为高pH可能是导致2016年池塘养殖凡纳滨对虾死亡率较高的重要原因,因此采取措施控制蓝藻生物量和水体的p H应有助于提高对虾养殖的存活率。  相似文献   

14.
通过田间试验探讨了底层增氧与不增氧池塘中水温、溶解氧、pH、NH3-N和NO2--N的变化规律,以及幼蟹暴露在空气中的时间、蜕壳频次、个体体质量频数分布等,并讨论与评估了底层增氧的生态学效应。结果表明:不增氧池塘水体在夏季易形成"温跃层"及溶解氧的"日较差"和"水层差",而底层增氧可有效打破池塘水体的"温跃层"和溶解氧的"水层差",减小温度变化及底层低氧对中华绒螯蟹幼蟹的胁迫,而且使溶解氧、NH3-N和NO2--N浓度以及pH保持在河蟹正常生长所要求的范围,促进幼蟹的蜕壳,提高个体的体质量和肥满度。  相似文献   

15.
釆用MS-222浓度为0(C0组)、5 mg/L(C1组)、10 mg/L(C2组)、15 mg/L(C3组)、20 mg/L(C4组),运输时间为0、2、4、6、8、10 h,运输密度为33 g/L,采用5×6双因素实验,氧气袋运输翘嘴鲌(Culter alburnus)稚鱼,研究了运输时间和MS-222浓度对翘嘴鲌全鱼皮质醇、乳酸含量及氧气袋内水质的影响。结果显示:翘嘴鲌全鱼皮质醇、乳酸水平随运输时间呈现先升高后降低的趋势,随麻醉剂浓度的增加而显著降低;C1-C4组的DO、p H随运输时间呈现先降低后升高的趋势,C0组则随运输时间的增加显著降低,各组的DO和p H随MS-222浓度的增加而显著增加;C1-C4组的氨氮(TAN)和游离CO_2浓度随运输时间呈现先升高后降低的趋势,而C0组则随运输时间的增加显著升高,各组的TAN和游离CO_2浓度随MS-222浓度的增加而显著降低。时间和浓度的交互作用都显著。运输时间T6 h时,MS-222刺激翘嘴鲌,不利于运输,运输时间T6 h时,MS-222能显著降低其应激水平及代谢强度,其中C4组皮质醇、乳酸含量最低,C3、C4组水质条件最好,其适宜的麻醉剂浓度为15~20 mg/L。  相似文献   

16.
对虾海水高密度养殖后期水质因子的昼夜变化规律   总被引:2,自引:0,他引:2  
2008年7月5~6日,对广东汕尾红海湾对虾养殖场养殖87~88d的海水高密度半封闭养殖虾池水质进行每4h监测分析,旨在了解养殖后期昼夜水质变化状况,为合理和即时调控养殖后期水质提供相关理论数据。结果显示,24h内水质指标除化学需氧量(COD)和无机氮(DIN)基本稳定外,其他因子均有较大波动。其中氨氮(NH4+-N)在3:00达到高峰,5:00落至低谷,9:00又达到高峰;亚硝酸盐氮(NO2--N)的变化却相反,在3:00落至低谷,5:00达到高峰,9:00又落至低谷;pH和溶解氧(DO)均在5:00降至最低,13:00上升到最高。结果表明,3:00~9:00是虾池水质变动的关键时期,应留意水质变化,适时采取合理增氧措施并投洒相应水质调节剂以提高ρ(DO),减少NH4+-N和NO2--N产生及降低其毒性。  相似文献   

17.
采用静水法生物测试,研究了亚硝酸盐(NO2--N)和硫化物(S2-)对克氏原螯虾(Procambarus clarkii)幼虾急性毒性效应。实验结果表明,克氏原螯虾幼虾的死亡率随着NO2--N和S2-浓度的升高和暴露时间的延长而显著上升。NO2--N对克氏原螯虾幼虾24、48、72、96h的半致死浓度(LC50)分别为108.09、90.08、73.02、69.74mg/L。S2-对克氏原螯虾幼虾24、48、72、96h的半致死浓度(LC50)分别为12.96、9.57、7.62、4.63mg/L。克氏原螯虾幼虾对NO2--N和S2-的安全浓度(SC)分别为6.97mg/L和0.46mg/L,为相应渔业水质标准的35倍和2.3倍,说明克氏原螯虾对NO2--N和S2-的毒性具有一定的耐受力,且对NO2--N的耐受能力强于S2-。  相似文献   

18.
水浮莲对水产养殖排放水体净化的初步研究   总被引:1,自引:3,他引:1  
研究了水浮莲(Pistia stratiotes)在可控条件下对水产养殖排放污水中的氨氮、亚硝酸氮、硝酸氮、总氮、总磷、化学耗氧量等水质指标的去除效果。试验结果表明,水浮莲对水体中的氨氮、亚硝酸氮、硝酸氮、总氮、总磷和COD均有一定的净化效果,各水质指标的含量均有不同程度的降低,其最大去除率分别为42.4%、47.5%、23.2%、5.80%、51.5%和25.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号