首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
李磊  陈均志  张海平 《安徽农业科学》2007,35(19):5655-5656,5660
[目的]为了研究微波复合酶水解植物蛋白制取小分子多肽的可行性。[方法]采用微波加热和中性、酸性蛋白酶双酶复合水解大豆分离蛋白(SPI),并用高效毛细管电泳和凝胶渗透色谱等分析方法进行了验证,讨论了反应机理,还对微波和常规加热进行了对比。[结果]采用微波加热和复合酶水解蛋白质可得到小分子多肽,其分子量在2 000~8 000 Da。SPI在微波复合酶水解条件下15 min即达到了常压酸解6 h的水解度,缩短了反应时间,提高了分解效率。[结论]微波加热和复合酶水解是将蛋白分解成多肽的高效方法。  相似文献   

2.
针对鲭鱼鱼肉蛋白质含量相对较高的特点,利用超声波辅助酶解制备抗氧化肽。以双缩脲法测得多肽含量,以对DPPH(1,1-二苯基-2-三硝基苯肼)自由基的清除率为指标,探究制备鲭鱼抗氧化肽的最佳工艺条件。结果表明,最佳的酶解制备条件为:中性蛋白酶加酶量3%、酶解温度50℃、底物浓度4%、超声波辅助酶解时间2.5 h,在此条件下,得到的多肽抗氧化能力较强,对DPPH自由基的清除率达到89.33%,采用中性蛋白酶在超声波辅助下酶解鲭鱼蛋白制备抗氧化肽是可行的。  相似文献   

3.
[目的]为酒糟中蛋白质的水解提供新方法。[方法]采用酶解法,用罗汉果蛋白酶提取酒糟中的蛋白质,测定酶解酒糟上清液中蛋白质的含量,计算单位体积蛋白质增量。在加酶量、酶解温度、酶解时间、pH值单因子试验的基础上,采用正交试验确定酒糟中蛋白质的最佳提取条件。[结果]各因素对单位体积蛋白质增量的影响依次为:pH值>水解时间>加酶量>水解温度。酶解酒糟的最佳条件为:pH值8.0,水解时间10 min,加酶量0.75 ml/100 g湿酒糟,温度65℃。在最佳条件下,单位体积蛋白质增量可达98.78%。[结论]该研究确定了酶解法提取酒糟中蛋白质的最优条件,使酶解上清液中蛋白质含量增加了近1倍。  相似文献   

4.
【目的】针对常规酶解反应所需时间较长,研究了微波辐射对蛋白酶水解蛋白质的影响,为蛋白的工业化快速酶解提供技术支持。【方法】根据木瓜蛋白酶水解大豆蛋白的最佳工艺条件,用自行设计的微波辐射蛋白酶催化反应器,在不加微波和480 W微波功率条件下(微波功率密度为4 W/g),采用木瓜蛋白酶水解大豆蛋白,用甲醛滴定法测试水解液中氨基酸含量,比较2种条件下的水解效果,并用高效液相色谱法分析了2种条件下水解液中氨基酸的组成。【结果】不加微波条件下氨基氮含量达到0.535 5 g/L需要水解5 h,而在480 W微波辐射下水解1 h,氨基氮含量就达到了0.568 7 g/L,反应速率提高了5倍以上。高效液相色谱分析表明,于常规条件下水解5 h和480 W微波辐射辅助水解1 h,木瓜蛋白酶水解大豆蛋白的酶解液中游离氨基酸含量和总氨基酸含量基本相同。【结论】微波辐射可以加快蛋白酶水解反应,提高反应速率。  相似文献   

5.
随着生物技术和酶技术的不断发展,酶法水解蛋白质并对其进行改良的应用越来越广泛,利用此法水解蛋白后得到的产物中含有丰富的生物活性多肽。基于此比较了不同的酶对杏仁蛋白水解的影响能力,通过单因素试验和正交试验而最终得出水解杏仁蛋白质的最佳工艺参数为:温度55℃,1.5h,pH值为7.5,固液比1:9,酶浓度为7%。  相似文献   

6.
植物蛋白的功能性质是制约其应用的重要因素,酶水解是改善蛋白质功能性质的常用主要手段.高压不但能改变蛋白质分子结构而改善蛋白质的功能性质,而且能促进酶水解蛋白质生成新的多肽产物.综述了高压对蛋白质结构的影响,高压对蛋白质酶水解的影响以及高压对蛋白质功能性质的影响等方面的研究进展.  相似文献   

7.
胡炜  周洁  付强 《南方农业学报》2014,45(11):2046-2051
[目的]优化水牛卵泡液蛋白质差异表达样品制备程序,为相对和绝对定量同位素标签(iTRAQ)技术在蛋白质差异表达分析中的应用奠定基础.[方法]在蛋白质样品溶液酶解过程中,选择两种不同沉淀剂沉淀蛋白质,分别比较蛋白质酶解、iTRAQ标记反应和多肽色谱分离的效果;在纳升液相色谱(nano-LC)分离样品前用快速分离小柱进行处理,鉴定色谱分离效果,以确定蛋白质样品预处理的优化程序.[结果]相对于丙酮,使用含0.1%乙酸的丙酮—乙醇混合液(1∶1)作为沉淀剂可获得较好的蛋白质沉淀效果,蛋白沉淀为白色,蛋白质浓度为5.76μg/μL.相对于蛋白质溶液在还原烷基化后直接使用胰蛋白酶酶解,在酶解前沉淀蛋白质溶液可使蛋白样品的酶解效率更高,获得的肽段峰更丰富、峰值更高;可使多肽和iTRAQ试剂间产生有效的标记反应,母离子具有较高的碎裂效率,获得的二级碎片峰更丰富,iTRAQ试剂的特征报告离子116 m/z较117 m/z的谱图强,辨识度高;获得的多肽nano-LC分离色谱峰更丰富,峰值和分辨率更高.相对于直接进行LC分离,在nano-LC分离前用快速分离小柱对多肽溶液进行杂质处理,也可获得丰富的多肽nano-LC色谱峰,且峰值和分辨率较高.[结论]在iTRAQ试剂标记、蛋白质液相分离和差异分析前,使用适宜的沉淀剂处理蛋白质溶液,并以快速分离小柱除去多肽混合液小分子杂质,可使质谱获得更准确的鉴定结果.  相似文献   

8.
[目的]优化水牛卵泡液蛋白质差异表达样品制备程序,为相对和绝对定量同位素标签(iTRAQ)技术在蛋白质差异表达分析中的应用奠定基础.[方法]在蛋白质样品溶液酶解过程中,选择两种不同沉淀剂沉淀蛋白质,分别比较蛋白质酶解、iTRAQ标记反应和多肽色谱分离的效果;在纳升液相色谱(nano-LC)分离样品前用快速分离小柱进行处理,鉴定色谱分离效果,以确定蛋白质样品预处理的优化程序.[结果]相对于丙酮,使用含0.1%乙酸的丙酮—乙醇混合液(1∶1)作为沉淀剂可获得较好的蛋白质沉淀效果,蛋白沉淀为白色,蛋白质浓度为5.76μg/μL.相对于蛋白质溶液在还原烷基化后直接使用胰蛋白酶酶解,在酶解前沉淀蛋白质溶液可使蛋白样品的酶解效率更高,获得的肽段峰更丰富、峰值更高;可使多肽和iTRAQ试剂间产生有效的标记反应,母离子具有较高的碎裂效率,获得的二级碎片峰更丰富,iTRAQ试剂的特征报告离子116 m/z较117 m/z的谱图强,辨识度高;获得的多肽nano-LC分离色谱峰更丰富,峰值和分辨率更高.相对于直接进行LC分离,在nano-LC分离前用快速分离小柱对多肽溶液进行杂质处理,也可获得丰富的多肽nano-LC色谱峰,且峰值和分辨率较高.[结论]在iTRAQ试剂标记、蛋白质液相分离和差异分析前,使用适宜的沉淀剂处理蛋白质溶液,并以快速分离小柱除去多肽混合液小分子杂质,可使质谱获得更准确的鉴定结果.  相似文献   

9.
以板栗为原料,提取蛋白质并水解制备多肽。通过SDS-PAGE测定板栗蛋白质的分子量,以植物蛋白水解专用酶采用三因素三水平的正交试验筛选制备板栗多肽的最佳水解条件,旨在为板栗的开发,利用提供理论依据。板栗蛋白质的等电点为4.5;分子量约为25 000 Da;植物蛋白水解专用酶最佳的水解条件:底物浓度2.5 g.L-1,酶添加量0.3%,pH 8.5,水解度是20.13%。得到板栗蛋白并制备出板栗多肽。  相似文献   

10.
[目的]筛选并优化螺旋藻蛋白酶解剂.[方法]采用酶解法初步研究了中性蛋白酶、复合蛋白酶、风味蛋白酶、碱性蛋白酶4种蛋白酶对螺旋藻蛋白质的水解效果,同时研究了底物浓度和酶的添加量对水解率的影响.[结果]结果表明,蛋白酶按酶解螺旋藻蛋白质的水解率,可由高到低依次排列为:碱性蛋白酶、风味蛋白酶、复合蛋白酶、中性蛋白酶.通过对酶解条件进行优化,发现碱性蛋白酶的作用效果受pH影响最大,最高水解率为60.5%(底物浓度20 g/L、E/S=4%、pH =8.9、55℃、酶解5 h).同时得出,碱性蛋白酶、复合蛋白酶、中性蛋白酶的最佳底物浓度均为20 9/L,最佳酶添加量均为4%,而风味蛋白酶的最佳底物浓度为20 g/L,最佳酶添加量为2%.[结论]研究可为后续功能性多肽的提取利用提供参考依据.  相似文献   

11.
[目的]探讨超声-微波辅助技术提取葛根异黄酮的最佳工艺条件。[方法]以乙醇作为提取溶剂,句容葛根作为原料,通过采用超声-微波辅助技术进行提取,以异黄酮得率为指标,考察微波功率、提取时间、料液比等因素对提取效果的影响,确定最佳的提取工艺参数。[结果]超声-微波辅助技术提取葛根异黄酮的最佳工艺条件为:提取时间31.2 min,料液比1∶30 g/ml,微波功率98 W,超声功率50 W,在此条件下,葛根异黄酮得率为8.92%。[结论]超声-微波提取法不仅缩短了提取时间,而且提高了葛根异黄酮的得率,是一种适合葛根异黄酮的高效提取方法。  相似文献   

12.
以干燥后的龙须菜(Gracilaria lemaneiformis)粉为原料,采用超声辅助碱提酸沉法提取龙须菜蛋白质。首先通过单因素实验选择了影响龙须菜蛋白质提取率的因素及水平范围,然后以Box-Behnken中心组合设计原理建立二次响应面回归模型,确定了最佳提取条件为:碱浓度0.2 mol·L-1、液固比24:1 (mL·g-1)、超声时间70 min、超声功率482 W,在此条件下的龙须菜蛋白质提取率为73.78%。此外,对提取得到的龙须菜蛋白质进行了酶解,分别研究了木瓜蛋白酶、碱性蛋白酶、植物蛋白复合酶、胰蛋白酶和胃蛋白酶对酶解产物抗氧化活性和分子量的影响。结果表明,在酶解4 h后,碱性蛋白酶酶解产物的抗氧化活性显著高于其他4种酶酶解产物和龙须菜蛋白质,其铁离子还原能力(ferric reducing antioxidant power, FRAP)、1,1-二苯基-2-苦基肼(DPPH)自由基清除率和2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)自由基清除率分别为81.88 μg·mL-1、63.29%、64.25%,分子量主要集中在1 500 u以下。本研究可为龙须菜蛋白质的提取及其高值化利用提供一定参考。  相似文献   

13.
超声辅助复配酶法制备黄姜中薯蓣皂素   总被引:1,自引:0,他引:1  
[目的]探讨超声辅助酶法水解黄姜生产薯蓣皂素工艺。[方法]通过正交试验优化纤维素酶和蜗牛酶组成的复配酶水解黄姜,建立高效液相色谱法定量薯蓣皂素,计算得率。[结果]酶解温度对薯蓣皂素得率的影响最大;最佳酶水解条件是酶解时间为48 h,酶添加量为物料的8%,酶解pH为6.0,酶解温度为50℃,薯蓣皂素的得率为0.524 9%。采用超声破碎辅助复配酶解法,薯蓣皂素的得率为0.630 9%。[结论]利用超声辅助纤维素酶和蜗牛酶提取黄姜中薯蓣皂素比直接酶解法得率提高了25%,接近酸解法的得率,应用潜力大。  相似文献   

14.
响应面优化超声波辅助酶法提取小米蛋白工艺   总被引:1,自引:0,他引:1  
以小米为原料,采用超声波辅助酶法提取小米蛋白,通过单因素试验研究加酶量、酶解温度、超声波功率、超声时间、酶解时间对小米蛋白提取率的影响,从而优化提取蛋白质的最佳工艺条件。在单因素试验的基础上,选取加酶量、酶解温度、超声波功率为影响小米蛋白提取率的主要因素,以提取率为响应值进行分析,构建数学回归模型。结果表明:提取的最佳工艺条件:酶解温度为43℃、加酶量为2.5%,超声波功率为420 W,超声时间25 min,酶解时间为100 min。在此条件下得到蛋白质的提取率为43.26%,提取率明显提高。  相似文献   

15.
超声-微波辅助提取桦褐孔菌多糖的工艺研究   总被引:1,自引:0,他引:1  
[目的]探讨超声-微波辅助技术提取桦褐孔菌多糖的最佳工艺条件。[方法]以水作为提取溶剂,用超声-微波辅助提取桦褐孔菌多糖,通过响应面分析法考察微波功率、微波处理时间和料水比对桦褐孔菌多糖得率和纯度的影响,优化超声-微波提取桦褐孔菌多糖的工艺参数,并和传统水浴浸提法进行比较。[结果]超声-微波辅助技术提取桦褐孔菌多糖的最佳工艺条件为:提取时间18.45~24.50 min,料液比1∶20,微波功率88.3~96.7 W。与传统的水浴浸提法相比,超声-微波提取法可大大缩短提取时间,得率由2.12%增加到3.25%,纯度由64.03%增加到73.16%。[结论]与传统的水浴浸提法相比,超声-微波提取法不仅缩短了提取时间,而且提高了桦褐孔菌多糖的得率和纯度。  相似文献   

16.
采用Box-Behnken中心组合试验设计对花生蛋白的超声微波辅助提取工艺进行优化,分析了微波功率、pH值、料液比、提取时间和酸沉pH值5个单因素对蛋白质提取率的影响,建立了微波功率、pH值和料液比的三因素回归模型.结果表明:微波功率、pH值、料液比、提取时间、酸沉pH值对蛋白质提取率有显著影响(P<0.05),提取的...  相似文献   

17.
王伟 《安徽农业科学》2011,39(22):13521-13523
[目的]探讨采用超声-微波辅助技术提取花生壳黄酮类化合物的最佳工艺条件及其抗氧化活性。[方法]以乙醇作为提取溶剂,用超声-微波辅助法提取花生壳黄酮类化合物,考察乙醇体积分数、提取时间和料液比对花生壳黄酮类化合物提取率的影响,通过响应面分析法优化超声-微波辅助提取花生壳黄酮类化合物的工艺参数,并研究花生壳黄酮类化合物对猪油的抗氧化性。[结果]采用超声-微波辅助技术提取花生壳黄酮类化合物的最佳工艺条件为:乙醇体积分数60%,提取时间120 s,料液比1∶20,在最优工艺参数条件下花生壳黄酮得率为6.11%;花生壳黄酮类化合物对猪油的自氧化有明显的抑制作用,且随着加入量的增多,抗氧化能力增强。[结论]超声-微波辅助提取法是一种较好的花生壳黄酮类化合物提取方法,花生壳黄酮类化合物对猪油有较强的抗氧化能力。  相似文献   

18.
为了解超声波技术对黑豆中蛋白质提取的影响,采用梯度改变超声波处理的时间、功率以及料液比的条件下,探究在不同p H时黑豆蛋白提取率的变化。结果表明:在超声波辅助提取黑豆蛋白的情况下,能够很大程度上提高其提取率,在超声时间为20min,超声功率为300W,料液比为1∶12的情况下蛋白提取率达到最佳,并于p H为9时最大程度地使黑豆蛋白溶出。  相似文献   

19.
欧阳娜娜  李湘洲  罗正 《安徽农业科学》2007,35(35):11368-11369
[目的]寻求银杏叶总黄酮外场辅助提取法的最佳提取工艺。[方法]用正交试验设计优选出银杏叶总黄酮的外场(微波场、超声波场)辅助提取工艺,并采用DPPH检测法对最佳工艺条件下的微波、超声波提取物的抗氧化性进行了比较研究。[结果]微波辅助提取银杏总黄酮的最佳工艺条件为:提取时间15min,乙醇浓度80%,提取温度70℃,料液比1∶25;超声波辅助提取银杏总黄酮的最佳工艺条件为:提取温度50℃,乙醇浓度80%,料液比1∶20,提取时间40min。在最佳工艺条件下微波法和超声波法提取得率分别为4.09%和3.68%,微波法所用时间仅为超声波法的1/3。[结论]微波法是提取银杏叶总黄酮的较好方法,超声波法提取物的抗氧化能力强于微波提取物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号