首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】克隆水稻直立短穗基因Erect and Short PanicleESP),分析其参与的基因调控途径,解析ESP控制株型、穗长等农艺性状的分子机理。【方法】以直立短穗突变体esp及其野生型为材料,成熟期进行株高、穗长、粒长等表型测定;构建籼粳杂交F2定位群体,挑选与突变表型一致的F2单株,利用与突变性状连锁的分子标记对目的基因进行定位;对野生型和突变体进行基因组测序,结合定位结果,找到突变位点,克隆ESP;利用生物信息学软件进行进化树和基因表达分析;提取野生型和突变体幼穗中的RNA并建库,GO(gene ontology)聚类分析表达差异基因,同时根据KEGG(kyoto encyclopedia of genes and genomes)数据库,分析野生型和突变体中植物激素信号转导和内质网蛋白加工相关基因的表达变化,并通过qRT-PCR验证。【结果】通过表型观察和农艺性状调查,与野生型相比,直立短穗突变体esp株高降低,穗长变短,穗型由弯曲变为直立,每穗粒数减少,粒长变短,粒宽和千粒重增加;有效穗数无显著差异。利用突变体esp与PA64构建籼粳F2定位群体,将目的基因定位于水稻第7染色体长臂标记C7-11和C7-14之间7.58 Mb区间内,基因组测序发现LOC_Os07g42410第6内含子与第7外显子连接位点由碱基G变异为A,导致第6内含子不能被剪切,蛋白翻译提前终止;该基因与已报道的OsDEP2/OsEP2为等位基因。进化分析显示该基因广泛存在于单子叶和双子叶植物中;表达分析表明ESP在茎秆、花序、雌蕊、内外稃和子房中高度表达,其表达水平随着子房变大而逐渐降低。利用转录组分析突变体和野生型幼穗中的基因表达,结果表明,与野生型相比,esp突变体中表达差异显著(差异>1.5倍)的基因630个,其中235个表达上调,395个表达下调。GO分析显示植物激素信号转导和内质网蛋白加工相关基因受到不同程度地调控,利用qRT-PCR进行验证,结果与转录组数据一致。【结论】直立短穗基因ESP与已报道的直立穗基因OsDEP2/OsEP2为等位基因,其突变导致株高降低、穗长变短等多个表型;ESP可能通过调节植物激素信号转导、内质网蛋白加工过程中的基因表达,进而影响植株的发育。  相似文献   

2.
【目的】水稻产量由单位面积有效穗数、每穗粒数和粒重3个因素构成,其中,粒重主要由水稻的籽粒形态决定。筛选和鉴定新的粒型突变材料和基因,可为产量性状的分子设计育种奠定基础。【方法】在籼稻保持系西大1B(XD1B)的甲基磺酸乙酯(EMS)诱变群体中鉴定到一个短宽粒突变体short and widen grain 1(swg1);分析籽粒形态和其他农艺性状,并对颖壳进行组织细胞学观察分析;运用BSA法进行基因定位;通过遗传互补试验确定候选基因;采用qRT-PCR分析该基因的表达模式及其他粒型相关基因和细胞发育基因的表达水平。【结果】农艺性状分析发现,与野生型相比,swg1突变体粒长显著降低,粒宽显著增加,表现出短宽粒的表型;进一步组织和细胞学分析,发现突变体颖壳纵向细胞变短是粒长变短的主要原因,而粒宽增加是由于颖壳横向细胞数目和细胞大小同时增加。遗传分析结果表明,该突变性状受隐性单基因控制,通过图位克隆与遗传互补验证,确定候选基因为LOC_Os07g42410,编码一个植物特异转录因子。qRT-PCR分析发现该基因表达无明显的组织特异性,在茎、叶、幼穗中表达强烈。通过对已知粒型相关基因、细胞...  相似文献   

3.
一个水稻早衰突变体基因的精细定位   总被引:1,自引:0,他引:1  
【目的】对水稻叶片早衰突变体W330进行遗传分析及精细定位,获得控制突变表型的基因。【方法】用60Co-γ辐射诱变籼型水稻恢复系中恢8015,从突变体库获得一份叶片早衰突变体W330。对该突变体进行表型观察和主要农艺性状调查。利用多代自交稳定的突变体W330与粳稻品种02428杂交,观察F1和 F2的表型,并统计F2群体中早衰突变表型与正常野生型的分离情况,分析该突变表型的遗传行为。利用构建的F2群体进行精细定位和候选基因分析,然后对候选基因进行DNA测序、酶切分析、表达分析、酶活测定及进化分析。【结果】突变体W330从三叶期开始出现叶片衰老,直至抽穗期及黄熟期。与野生型相比,突变体W330株高变矮、分蘖减少、叶片变窄、抽穗期不变、每株有效穗数、每穗着粒数和结实率亦显著降低。W330与02418杂交的F1表现正常,F2群体中正常植株与早衰突变植株的分离比符合3﹕1,表明突变体W330的突变性状受1对隐性核基因控制。利用F2定位群体及SSR、Indel标记,最终将目标基因定位在第3染色体短臂上2个分子标记CD-5与CD-7之间,物理距离约为21.5 kb。基因预测表明该区域共有4个完整的ORFs。其中,LOC_Os03g0131200编码一个过氧化氢酶OsCATC,基因组序列分析表明,W330突变体中的该基因从ATG开始第109位,在第一个内含子的末位发生了一个C到G的颠换,造成第一个内含子没有剪切,最终导致翻译提前终止,酶切试验验证了这一突变位点。与野生型亲本中恢8015相比,W330突变体在三叶期叶片中的过氧化氢酶的活力下降了47.8%,而过氧化氢含量上升了2.7倍。由此,推定W330与OsCATC等位。系统进化分析发现,OsCATC与水稻中同源的过氧化氢酶不在同一进化分支上。实时荧光定量PCR发现,与其野生型相比,突变体W330叶片中的OsCATA和OsCATB的表达量显著上升,而OsCATC的表达量没有明显的变化。推测,这3个高度同源的基因在水稻体内可能存在互补机制。【结论】W330突变体基因是已报道的过氧化氢酶基因OsCATC的等位基因。W330突变体在第一个内含子上发生的一个点突变造成可变剪切的发生,使得水稻一个过氧化氢酶失活,导致突变体W330突变表型的出现。  相似文献   

4.
水稻黄绿叶突变体ygl13的鉴定及候选基因分析   总被引:2,自引:0,他引:2  
【目的】对水稻黄绿叶突变体ygl13 (yellow-green leaf 13 )进行表型鉴定和候选基因检测,以便了解水稻叶色形成和调控的分子机制。【方法】经甲基磺酸乙酯(EMS)诱变籼稻恢复系缙恢10号(Jinhui 10),从中筛选出1份遗传稳定的黄绿叶突变体命名为ygl13,对突变体的表型进行系统观察,调查其成熟期的主要农艺性状,分别测定野生型和突变体苗期和孕穗期的叶片光合色素含量,同时利用透射电镜观察野生型和突变体ygl13的叶肉细胞及叶绿体结构。将表型正常的不育系西农1A与突变体ygl13杂交,根据F1和F2群体的性状表现与分离情况,分析该突变性状的遗传行为,并以F2作为基因定位群体,对突变体ygl13进行候选基因遴选和突变位点测序验证。【结果】突变体ygl13的植株叶片在整个生育期均呈现黄绿色,与野生型缙恢10号相比,突变体ygl13苗期和孕穗期叶片叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低。透射电镜观察结果显示,与野生型相比,突变体ygl13叶绿体结构异常,基质片层减少退化,类囊体片层减少,不规则的散乱分布。农艺性状调查结果表明,突变体ygl13穗总粒数增加了26.06%,株高和结实率分别降低了12.33%和18.82%,但穗长、有效穗、穗实粒数和千粒重无显著差异。F2群体正常叶色的植株数与黄绿叶植株数分离比经χ2测验符合3﹕1分离比例(χ2=2.35<χ20.05=3.84),表明ygl13的黄绿叶性状由1对隐性核基因控制。YGL13被定位于第8染色体短臂InDel标记ID43和ID69之间,遗传距离分别为4.0和0.5 cM,区间物理距离约为318 kb,共有52个基因。经测序比对分析发现,ygl13突变体在OsSIG1编码区的第1 005个碱基G突变为碱基A(位于第三外显子),造成编码色氨酸(Trp或W)的密码子突变为终止密码子,导致蛋白翻译提前终止,则该基因编码520个氨基酸的蛋白质突变为334个氨基酸的截短蛋白。qRT-PCR结果表明,突变体ygl13部分光合色素代谢途径和光系统相关基因表达紊乱。【结论】水稻突变体ygl13的黄绿叶性状由1对隐性核基因控制,该基因与已报道的水稻质体σ因子OsSIG1为等位基因。  相似文献   

5.
【目的】通过对一个水稻短穗小粒突变体的鉴定与基因精细定位,为水稻等禾本科作物的籽粒发育及分子改良奠定基础。【方法】在水稻EMS诱变体库中鉴定到一个短穗小粒突变体,暂命名为sps1shorten panicle and seed 1)。成熟期观察野生型和sps1的形态变化,考察株高、节间长、穗实粒数、结实率和千粒重等农艺性状;对野生型和sps1籽粒外稃内外表皮中部进行扫描电镜观察,并利用石蜡切片进一步分析野生型和sps1籽粒的形态变化;配制缙恢10号/sps1杂交组合进行遗传分析,并利用其F2群体进行基因精细定位;对野生型和sps1两叶一心期的叶鞘进行油菜素内酯(brassinolide,BR)敏感性试验;抽穗期分析SPS1在水稻根、茎、叶、鞘和穗中的表达,并对籽粒发育相关基因和BR相关基因进行qPCR分析。【结果】sps1穗和倒1、2、3的节间长度均极显著短于野生型,导致株高半矮化;此外,sps1穗枝梗数、结实率和千粒重也显著降低;扫描电镜观察发现sps1外稃中部内外表皮细胞长度极显著小于野生型,宽度则极显著变大,石蜡切片观察进一步证实了sps1籽粒宽短是由细胞变短、变宽造成的;籽粒发育相关基因qPCR分析发现,部分通过调控细胞分裂和扩展进而影响水稻籽粒发育的基因表达量发生了显著变化,在sps1中,AFD1SLGHGWGS3的表达量显著上调,GW7GID1显著下调;选取符合3﹕1分离比例的F2代分离群体中的突变单株进行基因定位,最终将调控基因精细定位在第7染色体上标记sps1-3和sps1-2之间134 kb的物理范围内,包含19个注释基因;经测序,与野生型相比,发现sps1中的Os07g0616000在编码区有一个A-T的碱基替换,致使编码的赖氨酸变成了终止密码子,导致蛋白翻译提前终止,初步确定为候选基因。qPCR分析发现SPS1在水稻的根、茎、叶、鞘和穗中均有表达,且在茎秆中的表达量最高;生物信息学分析发现,SPS1DEP2的一个新等位基因。sps1对外源BR的敏感性降低,BR钝感基因D1的表达极显著下调;推测SPS1/DEP2可能通过BR信号传导途径调控水稻籽粒和株型的发育。【结论】sps1是一个水稻短穗小粒突变体,SPS1编码一个表达蛋白,是DEP2的新等位基因,通过BR信号传导途径调控水稻籽粒和株型的发育。  相似文献   

6.
【目的】对一个水稻矮化剑叶卷曲突变体进行鉴定与基因定位,为水稻等禾谷类作物剑叶形态发育及分子改良奠定基础。【方法】在籼型水稻恢复系缙恢10号的甲基磺酸乙酯(EMS)突变库中筛选到一个隐性矮化剑叶卷曲突变体,命名为dcfl1(dwarf and curled flag leaf 1)。田间小区种植,全生育期内观察dcfl1和野生型的株型变化。苗期利用扫描电镜观察叶鞘内表皮细胞大小;孕穗期和抽穗期利用石蜡切片观察剑叶基部形态;开花期测定剑叶、倒2叶和倒3叶的叶绿素含量;成熟期考查株高、有效穗数、穗实粒数、结实率和千粒重等主要农艺性状。配制西农1A/dcfl1杂交组合,利用F1和F2群体进行遗传分析,并利用F2隐性群体进行基因定位。【结果】生育期内,突变体dcfl1都表现出矮化性状。dcfl1叶鞘内表皮细胞长度明显比野生型要短,达到了极显著水平。与野生型相比,穗长、倒1节间和倒2节间均显著变短,倒3节间和倒4节间无显著变化。抽穗期dcfl1剑叶的叶片和叶鞘连接处硬化,剑叶基部展开受阻,半边叶片向内卷曲,剑叶上部和中部正常,其他叶片也正常。农艺性状调查发现,dcfl1的有效穗数为14.24,极显著高于野生型的11.62,穗粒数、实粒数、结实率和千粒重等则无显著变化。此外,dcfl1的叶色略深,剑叶、倒2叶和倒3叶的叶绿素a含量均极显著高于野生型,类胡萝卜素含量也略有升高,但仅剑叶达到极显著差异水平,叶绿素b的含量则无显著变化。西农1A/dcfl1的F1群体中,株高和剑叶表型与野生型一致。F2群体中分离出正常和突变两种表型,突变表型与dcfl1类似,植株株高变矮,剑叶基部特异卷曲,说明矮化和剑叶基部特异卷曲是一对共分离性状。且两种表型分离比符合3﹕1,表明dcfl1突变型受1对隐性核基因控制。利用620株F2隐性单株,最终将DCFL1精细定位在第3染色体短臂In Del标记Ind03-11和Ind03-6之间78 kb的物理范围内,包含15个注释基因,为DCFL1的克隆和水稻剑叶形态发育机理研究奠定了基础。【结论】dcfl1是一个水稻矮化剑叶基部特异卷曲突变体,基因精细定位在第3染色体78 kb的物理范围内。  相似文献   

7.
【目的】利用EMS对水稻(Oryza sativa L.)保持系品种宜香1B进行诱变,筛选出3份长护颖突变体。通过基因定位和克隆,探明控制该性状的遗传基础以及分子机理,并在不同器官进行表达分析,了解该基因表达特点。【方法】以3份水稻长护颖突变体Oslg-1Oslg-2Oslg-3为材料,进行表型分析、等位性鉴定、基因定位、生物信息学分析,以及qRT-PCR定量表达分析。【结果】Oslg-1突变体小穗在幼穗发育早期与野生型无明显差异,但在成熟期其护颖的远轴表皮细胞凸起且粗糙,形成的结节轴向对齐排列,且毛状物较多,形成垂直相间的横纵沟,与外稃表皮细胞结构相似。遗传分析表明,该类突变表型受1对隐性基因控制,OsLG定位于第7染色体短臂SSR标记RM5344和RM20934之间,遗传距离分别为1.11和0.82 cM,物理距离为246.3 kb。对该区域候选基因分析和测序,发现LOC_Os07g04670基因在编码区第182位碱基(T→A)改变,导致其编码氨基酸第61位(Leu→His)的改变。等位性分析表明,Oslg-2Oslg-3Oslg-1属等位变异,进而对突变体Oslg-2Oslg-3OsLG测序,突变分别发生在第316位(T→A)和119位(T→C)碱基,导致其编码的氨基酸第106位(Trp→Arg)和第40位(Leu→Pro)突变。对该基因进行同源进化分析和序列比对,表明该基因可能调控水稻护颖伸长。对本突变材料的候选基因和另一控制护颖性状的PAP2进行实时荧光定量PCR(qRT-PCR)分析,结果表明,OsLG在水稻的叶片、穗、叶鞘和根中均有表达,且在穗部表达最高,而PAP2在除穗部以外的其他部位几乎不表达,表明2个控制护颖性状的基因均具有组织特异性,且PAP2的特异性更强;在长护颖突变体中,2个基因表达量均下调,表明其具有协同表达特点。【结论】3份水稻长护颖突变体OsLG与已报道的G1为同一基因,其功能结构域内氨基酸的突变导致长护颖发育;OsLGPAP2在穗部具有协同表达的特点。  相似文献   

8.
【目的】穗发育对于农作物产量至关重要,而穗顶端败育谷子产量下降的重要原因之一。通过挖掘谷子穗顶端败育的相关基因,探求谷子穗顶端发育的生物学通路,以期为谷子穗发育遗传机理研究提供理论基础。【方法】利用化学诱变剂甲基硫酸乙酯(ethyl methyl sulfonate,EMS)对野生型豫谷一号(Yugu1)进行诱变,在其后代中发现了一个可以稳定遗传的穗顶端败育的突变体,命名为sipaa1,同时对该突变体的农艺性状进行鉴定。以突变体sipaa1母本,SSR41父本构建的F2定位群体为材料进行遗传分析及图位克隆,确定基因所属染色体以及在该染色体上的位置。对突变体sipaa1和野生型Yugu1的BC1F2进行高通量测序,挖掘定位区间内的候选基因,根据候选基因在谷子不同组织部位表达量的差异,找出在穗部高表达的候选基因。对孕穗期的Yugu1和sipaa1进行转录组测序,寻找差异表达基因并分析差异表达基因富集的生物学通路。【结果】与Yugu1相比,突变体sipaa1的平均株高略有增高,增幅不显著,叶长、叶宽分别降低了10.66%和5.08%。突变体的表型变异主要集中在穗部,最突出的表现是穗顶端小花发育异常,谷穗长和谷穗粗分别降低了11.36%和16.12%,单株穗重、谷码数、单穗粒重及千粒重分别降低了30.02%、32.58%、30.55%和18.18%。通过对sipaa1×SSR41的F2代群体中正常株与突变株的遗传分析表明该突变为隐性单基因控制。经图位克隆将突变基因定位于第1染色体Indel标记1-9.23与1-9.333之间约100 kb的范围内。结合高通量测序数据库,在该定位区间筛选到6个在穗部高表达的候选基因。转录组测序发现,在突变体与野生型之间存在2 768个上调表达基因,507个下调表达基因,且定位区间内有2个差异表达基因主要与激素信号转导、外界胁迫响应、植物-病原互作等生物学通路有关。【结论】谷子穗顶端败育突变体sipaa1由隐性单基因控制,突变基因位于第1染色体Indel标记1-9.23与1-9.333之间,转录组测序与基因功能分析发现了2个在穗部高表达且与植物花器官发育及胁迫响应密切相关的候选基因,候选基因可能通过对激素、胁迫响应,以及细胞程序性死亡等相关通路调控谷子穗顶端败育。  相似文献   

9.
重离子诱发的2个水稻突变体表型鉴定及遗传分析   总被引:1,自引:1,他引:0  
【目的】明确2个水稻突变体的表型特征与遗传方式。【方法】通过重离子诱变野生型籼稻种质BBS,从其M2代中筛选出2个突变体,分别命名为m2和m3。通过表型观察和性状比较,对突变体材料进行鉴定;构建了粳稻种质02428(父本)与m2、m3的F_2群体,并进行遗传分析。【结果】与野生型BBS相比,m2全生育期叶宽极显著变窄且内卷;m2剑叶、倒2叶和倒3叶的卷曲度分别为22.30%、38.15%和28.84%,与野生型BBS差异达到极显著水平;m2表现出高度不育。早季播种后第54天、晚季播种后第30天,m3从主茎新叶叶梢开始枯萎,整个叶枯表型持续25 d左右,之后新长出的叶片恢复正常;m3主穗质量和主穗粒数极显著下降,其他农艺性状与野生型BBS无显著差异。遗传分析结果表明,m2/02428的F_2群体剑叶宽的频率分布符合正态分布,m3/02428的F_2群体中正常个体与叶片枯萎个体的分离比符合3∶1的理论比值。【结论】m2为窄叶突变体,其窄叶性状受多个基因控制;m3为叶片枯萎突变体,其突变性状受1对隐性核基因控制。  相似文献   

10.
一个水稻短根毛突变体的鉴定和基因定位   总被引:1,自引:1,他引:0  
 【目的】鉴定和克隆水稻根毛突变体新基因,了解水稻根毛发育的分子遗传机理。【方法】通过T-DNA插入获得短根毛突变体。采用溶液培养、形态特征观察、杂交后代的表型分离统计及基于图位克隆技术的基因定位等方法,对突变体Ossrh1的表型、遗传和基因精细定位开展研究。【结果】突变体在苗期表现为根毛长度变短,只有野生型长度的36%左右,遗传分析表明该突变性状受1对隐性基因控制,利用Ossrh1和籼稻品种Kasalath杂交构建的F2群体对OsSRH1进行基因定位, 发现与第6染色体上的SSR(simple sequence repeat)标记RM3183和RM193连锁,OsSRH1距它们的遗传距离分别为0.9 cM和1.0 cM。通过在两标记间发展3个新的STS(sequence-tagged site)标记,将OsSRH1精细定位于标记T1757和T1768之间,物理距离约为115 kb。【结论】水稻短根毛突变体Ossrh1的性状由1对隐性核基因控制,该基因位于第6染色体的STS标记T1757和T1768之间115 kb范围内。  相似文献   

11.
【目的】研究水稻花器官数目异常突变体afon1(abnormal floral organ number1)的分子机理,鉴定出控制水稻花器官数目变化的基因。【方法】利用甲基磺酸乙酯(EMS)诱变籼稻品种浙农34获得一个花器官数目异常突变体作为试验材料,命名为afon1。开花期随机取突变体afon1和野生型浙农34的稻穗各5个,利用组织学和扫描电子显微镜等技术研究afon1的花器官表型、细胞学特征和花粉育性。成熟期随机取突变体afon1和野生型浙农34植株各10株,测定株高、分蘖数、穗长、每穗颖花数、每穗实粒数和千粒重等农艺性状。随机取突变体afon1和野生型饱满种子各100粒,测定发芽势和发芽率。以突变体afon1为母本,分别与野生型浙农34和粳稻品种浙农大104杂交构建2个F2群体进行遗传分析和基因定位,筛选候选基因进行DNA测序比对,构建AFON1蛋白质的空间模型并对其结构进行分析,同时对候选基因以及与花器官数目相关的基因进行实时荧光定量PCR分析。【结果】与野生型相比,突变体afon1中59.64%小穗的花器官数目发生异常,其中多数小穗仅在内稃一侧产生一个颖壳状的器官,部分小穗表现2—4轮花器官数目同时增加;株高和千粒重显著增加,而结实率显著降低。遗传分析表明,突变体afon1与野生型浙农34杂交的F1植株小穗花器官数目表现正常,F2群体中小穗花器官数目正常植株与花器官数目异常植株的分离比符合3﹕1,表明突变体afon1性状受一对隐性核基因控制,基因位于水稻第1染色体长臂端In Del标记1M5和1M18之间,物理距离为73 kb,该区间内共有6个注释基因。突变体afon1和野生型的测序比对发现,突变体afon1中的基因LOC_Os01g67430外显子中第565个碱基T突变成A,导致第189个氨基酸由色氨酸突变为精氨酸。蛋白质序列和空间结构分析表明,AFON1蛋白质序列中含有一个Lipase_3结构域,结构域内的突变导致蛋白质的空间结构发生了明显的变化。实时荧光定量PCR结果显示,LOC_Os01g67430在突变体afon1幼穗中的表达量要显著高于野生型,而在根、茎和叶中则无显著差异;穗发育早期FON1和FON2/4等调控花器官数目的基因在突变体afon1花器官中的表达量显著增加。【结论】LOC_Os01g67430为突变基因afon1,该基因通过影响花器官数目相关基因的表达而调控各轮花器官数目。  相似文献   

12.
水稻开颖半不育突变体的观察、遗传分析和基因定位   总被引:1,自引:0,他引:1  
【目的】通过对一份航天诱变水稻(Oryza sativa L.)开颖半不育突变体ohssopen-hull semi-sterility)进行形态特性调查、遗传分析和基因定位,筛选候选基因,为下一步基因克隆和功能分析奠定基础。【方法】以籼稻品种航恢七号为材料,通过“神舟八号”飞船搭载,诱变获得一份水稻开颖半不育突变体ohss。对其进行形态特征解剖观察,分析颖花器官发育突变特点。调查突变体和野生型的花粉可育率、自然结实率和套袋自交结实率,对其育性进行鉴定。随机选取5个成熟单株,考察穗部谷粒相关性状并进行统计分析。通过覆盖全基因组的SSR分子标记检测,解析空间诱变的分子变异效应。以航恢七号、Francis和02428与突变体ohss配制杂交组合,观察F1和F2植株的花器官表型,进行?2测验,对突变性状进行遗传分析。以02428/ohss的F2分离群体作为目标基因定位群体,同时利用SSR标记以及新开发的多个InDel分子标记开展基因定位研究。利用RAP水稻基因组注释数据库对定位区间的候选基因进行预测,通过序列比对和基因表达分析筛选候选基因。【结果】开颖半不育花器官突变体ohss与野生型相比,抽穗期穗部明显包茎,颖花发育出现异常,内外稃片瘪弱、扭曲变形且开裂不抱合,颖花内部发育类似内稃状的器官,部分颖花没有内稃的分化。ohss发育异常颖花中可育花粉率58.74%,导致单株结实率、穗重、穗实粒数与野生型相比极显著降低。全基因组SSR标记检测表明突变体ohss总变异频率为0.0336,除了第7、12染色体未检测到突变位点,其他染色体上检测到突变频率范围为0.0143-0.0889。遗传分析结果显示ohss的开颖半不育表型受单隐性核基因ohss(t)控制,并将ohss(t)定位在水稻第3染色体上2个InDel标记InDel6043和InDel6070之间约27.6 kb的物理距离内。该区域有3个预测注释基因,序列比对和表达分析表明突变体ohssOsMADS1编码区及启动子序列未发生突变,但是表达模式发生强烈改变。【结论】开颖半不育的花器官发育突变体ohss受单隐性核基因ohss(t)控制,ohss(t)定位在水稻第3染色体上InDel6043和InDel6070标记之间约27.6 kb的物理距离内,其OsMADS1的编码序列及5′UTR区未发生碱基突变但表达受到强烈抑制。  相似文献   

13.
【目的】分析拟南芥xtc1突变体茎部表皮蜡的组分和含量,并鉴定导致xtc1突变体表型的基因。【方法】通过气相色谱法分析拟南芥xtc1突变体与Ler野生型茎部表皮蜡的成分;利用图位克隆确定突变基因位点,通过在拟南芥xtc1突变体中过量表达FATB基因,验证突变位点与FATB基因的关系。【结果】拟南芥xtc1突变体茎部表皮蜡总量约为Ler野生型的1/3,且各组分含量均明显减少;将突变基因定位在第1染色体顶端物理距离为80kb的2个标记T27G7-3和F22O13-1之间,该区域含有21个基因。T-DNA插入突变体观察及测序分析表明,xtc1突变体在At1g08510(FATB)基因的第1个外显子上产生14个碱基的缺失,导致翻译提前终止;在xtc1突变体中过量表达FATB基因可恢复xtc1突变体的正常表型。【结论】拟南芥xtc1突变体茎部表皮蜡含量减少,且突变基因为FATB基因。  相似文献   

14.
【目的】株型是影响作物产量的重要性状,对小豆矮秆窄叶突变体nld进行转录组学分析,以期探究小豆矮秆窄叶的转录水平调控机制。【方法】构建小豆栽培种野生型GM437和矮秆窄叶突变体nld的根、茎、叶转录组文库,利用RNA-Seq进行转录组学分析,对得到的差异表达基因进行GO注释和KEGG富集分析;同时,利用外施激素的方法确定突变体应答激素种类。【结果】转录组分析发现,差异表达基因主要集中于植物激素信号转导通路和苯丙烷生物合成通路。外施赤霉素可部分恢复矮秆窄叶突变体的生长。关键基因4-香豆酸辅酶A连接酶、肉桂酰辅酶A还原酶、肉桂醇脱氢酶、黑酸叶绿醇转移酶、4-羟苯基丙酮酸双氧酶等在小豆植株发育过程中起到重要作用。【结论】植物激素信号转导通路和苯丙烷生物合成通路为小豆矮秆窄叶建成主要调控通路,赤霉素在突变体植物激素信号转导通路中起主要作用。  相似文献   

15.
【目的】对甜瓜短蔓突变体Z8进行短蔓基因的精细定位并确定候选基因,为甜瓜株型的分子改良奠定基础。【方法】考察短蔓突变体Z8和野生型B15的主蔓节数、主蔓长度、主蔓节间长度以及侧枝长度等农艺性状。配制Z8/B15杂交组合并进行遗传分析,利用F2群体中的短蔓单株进行基因精细定位。通过对定位区间内注释基因编码区进行测序以确定候选基因。【结果】与野生型B15相比,突变体Z8节间显著变短导致植株矮化,顶端花序紧凑簇生,遗传分析表明其短蔓性状由一对隐性核基因Cmdm1控制。采用基因图位克隆策略,利用780个F2短蔓单株最终将该基因精细定位于第7染色体短臂标记c7-112和s2之间约56 kb的区间内,并与标记dm-1共分离,区间内共包含4个注释基因。经测序鉴定,发现Z8中与拟南芥ERECTA同源的MELO3C016916 ATG下游第1 995位碱基由T突变为G而产生终止密码子,导致蛋白翻译提前终止,致使后面激酶结构域完全缺失,推测MELO3C016916即为控制蔓长的Cmdm1。【结论】Z8短蔓性状受隐性核基因Cmdm1控制,利用分子标记最终将该基因定位于7号染色体短臂标记c7-112和s2之间约56 kb区间内,推测MELO3C016916为最有可能的候选基因。  相似文献   

16.
为解析高粱窄叶的分子调控机制,挖掘影响高粱叶片发育的关键差异表达基因。利用0.1%EMS化学诱变野生型BTX623获得高粱窄叶突变体nal1(narrow leaf1),以野生型植株BTX623和窄叶突变体nal1为材料,对不同发育时期的叶片长、叶片宽、株高、穗长等性状进行表型分析。结果表明:与野生型BTX623的叶片相比,2叶1心时,窄叶突变体nal1的叶片开始变窄;开花期植株和成熟期植株叶片宽和叶片长差异极显著;成熟期窄叶突变体nal1穗较松散,但植株株高差异不显著。开花期剑叶转录组分析结果表明:高粱窄叶突变体nal1和野生型BTX623开花期剑叶共筛选到差异表达基因1 520个,通过KEGG、GO富集分析得出,功能注释基因显著富集在植物激素信号转导、玉米素生物合成、光合作用天线蛋白、次级代谢产物生物合成等通路上;进一步研究发现参与调控生长素和玉米素信号转导的差异表达基因有17个,参与调控玉米素生物合成的差异表达基因为7个,这些基因在窄叶突变体nal1中差异表达,直接影响生长素、玉米素的信号转导和玉米素的生物合成。因此推测突变体nal1通过调节生长素、玉米素的信号转导和玉米素的生物...  相似文献   

17.
通过甲基磺酸乙酯(EMS)诱变,获得了1个可以稳定遗传的水稻斑马叶突变体zebra2-2.与野生型相比,突变体从苗期开始表现出黄绿相间的斑马叶表型,而且不同叶位叶片的表型存在差异,新叶较老叶的表型更加明显.30℃条件下可恢复为绿-淡黄相间表型.此外,突变体的抽穗期延迟,株高、穗长、每穗粒数和籽粒大小均显著降低.遗传分析结果表明,突变体的突变表型受1对隐性基因控制.图位克隆结果表明,突变体ZEBRA2基因的第3342位碱基由G突变为A,使得编码的氨基酸由甘氨酸突变成天冬氨酸,导致突变体呈现斑马叶表型.  相似文献   

18.
以籼稻品种蜀恢498(R498)及其通过EMS诱变产生的不同穗型籼稻突变体R816、R772、R449为试材,采取单因素随机区组设计,进行大田试验,比较分析不同穗型水稻穗部性状间的差异。结果表明:野生型R498为弯曲穗型,R816和R772为直立穗型,R449为半直立穗型;直立穗突变体的穗长变短,比野生型短约17%,半直立穗与弯曲穗型在穗长方面无显著差异;稻穗抗弯曲能力表现为直立穗型半直立穗型弯曲穗型,直立穗突变体穗轴直径、穗下第一节直径及大小维管束数等均显著高于野生型弯曲穗品种,半直立穗型的抗弯曲力显著大于野生型;直立穗突变体紧凑的穗部形态、更粗的直径以及穗颈中含有更多的大小维管束,具有更强的机械强度,有利于稻穗保持直立。  相似文献   

19.
【目的】对环境诱导卷叶突变体开展生理学特性分析,并对候选的突变基因开展初步定位,为下一步的基因克隆与功能分析提供研究基础。【方法】用60Coγ射线诱变粳稻品种日本晴(Nipponbare)种子,发现了一份叶片在晴朗天的正午时分高度内卷的突变体,命名为rl15(t)(rolled leaf 15)。通过田间种植鉴定,对该突变体进行表型观察及主要农艺性状调查。采用不同温度和相对湿度处理rl15(t)和野生型,以揭示影响突变体叶片卷曲的环境因素。试验设置3个处理温度(24℃、29℃、34℃)和2个相对湿度(RH=60%或95%),在人工气候箱处理抽穗期的rl15(t)和野生型,以处理1.5 h后的剑叶测定叶片卷曲度(RLI)。自清晨6:00时至下午18:00时,每隔2 h用便携式气体交换系统Li-6400测定rl15(t)和野生型剑叶的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)等指标,同时用WP4露点水势仪测定剑叶的叶片水势,分析并比较突变体和野生型的上述生理表现的异同。将rl15(t)与野生型日本晴杂交,观察F1植株和F2群体的叶片表型,对F2表型分离进行χ2测验,分析突变体的遗传行为。以rl15(t)×珍汕97B的F2群体为材料,利用BSA法对候选基因进行定位。【结果】与野生型亲本日本晴相比,rl15(t)突变体植株变矮、分蘖减少、穗长变短、籽粒变小、生育期延迟;rl15(t)突变体叶片短窄且在阴雨天气或晴天的清晨和黄昏时表现为正常的平展或轻微内卷,但在晴朗天的正午时分表现高度内卷。温度和湿度梯度处理试验表明,rl15(t)突变体叶片卷曲行为受环境诱导,湿度是诱导突变体叶片卷曲的主要因素,高温可促进该表型的表现。rl15(t)突变体剑叶的净光合速率、蒸腾速率和气孔导度等光合参数以及叶片水势在清晨和黄昏同野生型亲本较接近,但在正午时分均显著低于野生型;而rl15(t)突变体剑叶的水分利用效率(WUE)在清晨、正午时分和黄昏与野生型接近,但在其他时段显著高于野生型。rl15(t)与野生型亲本日本晴的F1表现叶片正常的平展,F2群体中平展叶与卷叶表型株符合3﹕1分离比,表明rl15(t)突变体的卷叶突变性状受1对隐性核基因控制。RL15(t)初步定位于水稻第10染色体长臂端SSR标记RM25302和RM25343之间,与两标记的遗传距离分别为0.8和2.0 cM。【结论】突变体rl15(t)的卷叶表型是受环境诱导的,候选基因定位于SSR标记RM25302和RM25343之间,该区段内未见同类表型基因的报道,推测RL15(t)可能是一个新的卷叶调控基因。  相似文献   

20.
水稻507ys黄绿叶突变体的遗传鉴定与候选基因分析   总被引:2,自引:0,他引:2  
【目的】对水稻507ys黄绿叶突变体进行遗传鉴定与候选基因分析。【方法】用化学诱变剂甲基磺酸乙酯(EMS)处理粳稻品种日本晴(Nipponbare),从突变体库中获得一份黄绿叶突变体507ys。对该突变体进行表型观察以及主要农艺性状调查分析。将507ys与正常绿色品种进行杂交,调查F1代的叶色表型和F2群体的叶色分离情况,分析该突变表型的遗传行为。利用(507ys/明恢63)的F2作为定位群体,对507ys突变基因进行精细定位且遴选候选基因,对候选基因进行DNA测序验证及编码蛋白序列同源性分析。同时,测定507ys突变体和野生型亲本的光合色素含量,并利用高效液相色谱(HPLC)精确分析它们的叶绿素组成成分,以进一步揭示507ys黄绿叶突变基因的候选基因。【结果】507ys黄绿叶突变体整个生育期呈黄绿色。与野生型亲本日本晴相比,507ys突变体在分蘖期叶片的叶绿素和类胡萝卜素含量分别下降52.1%和58.1%,成熟期株高、每株有效穗数、每穗着粒数和结实率分别减少8.3%、51.0%、7.4%和11.6%。507ys与正常绿色品种日本晴和明恢63杂交的F1表现正常的绿色,F2群体绿色正常植株与黄绿叶突变植株分离比符合3﹕1,表明507ys的黄绿叶突变性状由1对隐性核基因控制。该突变基因定位在第10染色体长臂近端部SSR标记RM333和InDel标记L3之间,遗传距离分别为0.56 cM和0.14 cM,两标记之间的物理距离约为60.2 kb,此区间内包含13个有注释的预测基因。基因组序列分析发现,507ys突变体中编码叶绿素酸酯a加氧酶的OsCAO1(LOC_Os10g41780)在编码区第2 198位碱基(CDS第1 057位碱基)处,碱基G突变为碱基A,造成编码蛋白的氨基酸序列第353位的谷氨酸(E)突变成赖氨酸(K)。对叶绿素组成成分分析表明,507ys突变体叶片中只有叶绿素a,没有叶绿素b。【结论】507ys突变体基因是已报道的叶绿素酸酯a加氧酶基因OsCAO1的等位基因。507ys突变体在OsCAO1外显子上发生的一个点突变使得其体内叶绿素酸酯a加氧酶失活,造成叶绿素b合成受阻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号