首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
华北生态群普通杏遗传多样性与群体结构分析   总被引:2,自引:1,他引:1  
【目的】研究华北生态群普通杏在不同地理来源间的遗传多样性、特异性和群体结构差异。【方法】应用21对SSR引物对67份华北生态群普通杏的遗传多样性和群体结构进行分析。【结果】21个SSR位点在67份华北生态群的普通杏材料中共检测出301个等位变异,每个位点的等位变异范围为8—24个,平均为14.33个。每个位点Shannon’s多样性指数(I)变异范围为0.65—2.67,平均为1.934。通过不同地理来源间比较,发现来自西北黄土高原区域的杏种质多样性丰富,拥有较多的等位变异。不同地理群间存在较多的互补等位变异;各地理群体拥有各自特有等位变异。基于混合模型的Structure2.2群体结构分析显示,将华北生态群普通杏划分为7个组群,且不同地理来源的材料均被划分到3个或以上的聚类群体。当K=4时,除仁用杏外华北生态群普通杏可以划分为西南亚群、华北平原亚群和东部丘陵亚群(包括山东丘陵地和辽南丘陵地的普通杏)3个亚群,与传统生态亚群划分相似。【结论】华北生态群普通杏种质具有丰富的遗传多样性,其中来自于西北地区的普通杏多样性最为丰富,有较多的变异类型。仁用杏种质遗传基础狭窄,但具有较多的特有等位变异和独特的血缘关系。华北生态群普通杏可以划分为3个亚群,但地理来源相同的种质不一定属于同一类群。  相似文献   

2.
【目的】筛选出多态性丰富的分子标记引物,为进一步研究广西野生大豆种质资源遗传多样性提供参考。【方法】运用SSR分子标记技术,选择60对核心SSR引物,对22份不同时期收集的广西野生大豆种质资源进行多样性分析,以筛选多态性引物。【结果】60对核心引物的等位变异数为1.0~8.0个,平均为3.5个,有23个位点表现出良好的多态性、等位变异超过4个;不同连锁群上SSR位点等位变异有所不同,变化范围为1.67~5.00个,其中J连锁群等位变异最低,平均为1.67个;B2和H连锁群等位变异最高,平均为5.00个。【结论】筛选的23对多态性丰富的SSR引物适合用于广西野生大豆遗传多样性分析。  相似文献   

3.
广西野生大豆种质资源SSR引物筛选   总被引:1,自引:1,他引:0  
【目的】筛选出多态性丰富的分子标记引物,为进一步研究广西野生大豆种质资源遗传多样性提供参考。【方法】运用SSR分子标记技术,选择60对核心SSR引物,对22份不同时期收集的广西野生大豆种质资源进行多样性分析,以筛选多态性引物。【结果】60对核心引物的等位变异数为1.0~8.0个,平均为 3.5个,有23个位点表现出良好的多态性、等位变异超过4个;不同连锁群上SSR位点等位变异有所不同,变化范围为1.67~5.00个,其中J连锁群等位变异最低,平均为 1.67个;B2和H连锁群等位变异最高,平均为5.00个。【结论】筛选的23对多态性丰富的SSR引物适合用于广西野生大豆遗传多样性分析。  相似文献   

4.
【目的】评价中国栽培大豆微核心种质的群体结构和遗传多样性水平,为拓宽大豆遗传基础、发掘优异基因、改良大豆品种提供理论依据。【方法】利用大豆20个连锁群上的100个SSR位点,对来自全国28个省补充完善的248份栽培大豆微核心种质进行SSR遗传多样性及群体结构分析;采用PowerMarker Version 3.25软件统计等位变异数、平均等位变异数、多态性信息量(PIC值)及亚群特有等位变异数等参数;基于遗传距离建立了栽培大豆微核心种质的无根Neighbor-Joining树;用Structure2.2软件对微核心种质的群体结构进行评价。【结果】100个SSR位点在248份材料中共检测出等位变异1460个,每个位点变异范围为2—33个,平均为14.6个,每个位点PIC值变异范围为0.158—0.932,平均为0.743。基于模型的群体结构分析显示,依据LnP(D)无法判断最佳K值(群组数),但通过计算系数ΔK发现,K=3为微核心种质的最佳群体结构。结合种质的生态类型及品种类型分析发现,地理来源相同的种质具有聚在一起的倾向,但来源相同的种质也有分在不同组的情况。不同生态类型及品种类型间均存在较多的互补等位变异和特有等位变异。【结论】中国栽培大豆微核心种质具有丰富的遗传多样性,可以用来拓宽大豆品种遗传基础;不同生态类型及品种类型间存在较多的互补及特有等位变异,是种质创新及品种改良的物质基础;栽培大豆微核心种质存在明显的群体结构,为微核心种质在育种中的直接或间接利用提供了理论依据。  相似文献   

5.
不同类型小豆种质SSR标记遗传多样性及性状关联分析   总被引:6,自引:2,他引:4  
 【目的】研究野生、半野生、栽培型小豆的遗传多样性,进一步阐明小豆的起源进化与传播,提高小豆种质的利用效率。【方法】从69对小豆和黑吉豆SSR引物中,筛选出11对多态性好的SSR标记,并结合植株形态性状特征鉴定,对558份来自中国、日本、韩国、不丹、缅甸的野生、半野生和栽培小豆种质资源进行遗传多样性分析和性状关联分析。【结果】共检测到86个等位变异,平均每个位点等位变异数为7.82个,变幅6—10个。野生、半野生、栽培型小豆都有其特征带,栽培小豆的特征带绝大多数来源于中国;野生小豆的特征带仅出现在中国西南、不丹和日本南部地区的种质中。遗传离散度是野生型>半野生型>栽培型,半野生型小豆更接近野生型小豆。聚类分析把558个小豆种质分为5大类,归类有较明显的地理相关性和遗传类型的趋同性。日本栽培小豆与韩国和日本野生及半野生小豆亲缘关系近,中国西南野生小豆与东南亚野生材料遗传关系近,与江苏地方品种遗传关系较近。关联分析表明,位于小豆第7连锁群的黑吉豆BG111标记分别解释野生和半野生小豆的主茎节数、茎粗、顶蔓、主茎分枝数性状的49%、44%、31%和18%;栽培小豆中,第1连锁群的黑吉豆BG48、第5连锁群的BG20和第9连锁群的小豆AZ24标记分别解释生育期、株高和单荚粒数、主茎分枝数性状的9%、7%、5%和6%。【结论】野生小豆遗传多样性丰富、变异背景广泛;中国栽培小豆起源于中国,具有丰富的遗传变异。黑吉豆BG111标记与野生和半野生小豆的茎粗、顶蔓、主茎分枝数、主茎节数性状相关联;黑吉豆BG48和BG20、小豆AZ24标记分别与栽培小豆的生育期、株高和单荚粒数、主茎分枝数相关联。  相似文献   

6.
亚洲大豆栽培品种遗传多样性、特异性和群体分化研究   总被引:6,自引:2,他引:4  
张军  赵团结  盖钧镒 《中国农业科学》2008,41(11):3511-3520
【目的】研究亚洲大豆栽培品种地理群体的遗传多样性、特异性和群体分化。【方法】应用大豆基因组64对SSR分子标记技术,对亚洲216份栽培大豆品种遗传变异进行分析。【结果】亚洲大豆栽培品种遗传多样性丰富,地理群体(中国东北、中国黄淮、中国南方、朝鲜半岛、东南亚、南亚)间存在较多互补等位变异数,最多的在中国黄淮与南亚群体间;各地理群体拥有各自特有或特缺的等位变异。亚洲大豆全群SSR标记遗传距离聚类(聚成6类)与地理群体分类间有极显著相关性,地理分群有其相应的遗传基础。亚洲全群由2类血缘组成,分别占中国国内和国外2大类群的绝大部分;地理群体间2类血缘组成的差异明显。国内与国外各群体间以中国南方与东南亚群体间分化最小;国外群以东南亚与朝鲜半岛群体间分化最小;国内群以中国黄淮与中国南方群体分化最小。【结论】亚洲大豆栽培品种地理群体间具有位点和等位变异的特异性,各群体间可以相互补充的位点及其等位变异甚丰富,利用国外栽培品种可以拓宽中国品种的遗传基础。  相似文献   

7.
基于SSR标记的中国绿豆种质资源遗传多样性研究   总被引:3,自引:1,他引:2  
【目的】分析中国栽培绿豆种质资源的遗传多样性、亲缘关系和遗传分化,为资源的有效利用、新基因的挖掘和新品种选育奠定基础。【方法】利用40对SSR引物对18个不同地理来源(共272份种质)的绿豆群体进行遗传多样性分析。【结果】共检测到125个等位基因,平均等位基因数(NA)为3.1个,平均有效等位基因数(NE)为1.8个,平均Nei’s基因多样性(H)为0.4233,平均多态性信息含量(PIC)为0.3497,平均期望杂合度(He)为0.4241,平均Shannon信息指数(I)为0.6754,比较发现,河北、山东和安徽是绿豆资源遗传变异较为丰富的地区;平均观测杂合度(Ho)为0.1001,种群内总近交系数(Fis)为0.6759,表明中国绿豆种质间存在一定程度地近交现象;18个参试群体整体水平上的基因流(Nm)值为0.6936,种群间遗传分化系数(Fst)为0.2649,遗传变异水平较高;基于Popgene软件的聚类结果可将272份参试个体聚为2大类,将18个参试群体分为3大类,群体间地理来源越近,亲缘关系也越近。【结论】中国绿豆种质资源遗传多样性较高;地理生态条件等对绿豆种质资源的遗传变异影响很大;群体间遗传分化较大,但同时也存在一定程度地近交现象。  相似文献   

8.
糜子骨干种质遗传多样性和遗传结构分析   总被引:8,自引:5,他引:3  
【目的】糜子生育期短、耐干旱、耐瘠薄、水分利用效率高,了解糜子资源的遗传多样性和遗传结构,为今后糜子杂交育种、种质创新、挖掘抗旱基因及资源的高效利用提供理论依据。【方法】采用表型鉴定和SSR分子标记对糜子资源进行遗传多样性检测。利用模糊隶属函数法分析糜子种质的株高、主穗长、叶片长、叶片宽、主茎节数、主茎粗、单株穗重、单株粒重和千粒重9个表型性状的分布情况。利用DPS7.05软件进行表型性状的遗传多样性分析、相关性分析和主成分分析,综合评价糜子种质资源的优劣。利用CTAB法提取糜子嫩叶基因组DNA,并利用SSR分子标记技术对不同地区的96份糜子种质资源的基因组DNA进行PCR扩增,后经8%聚丙烯酰胺凝胶电泳分离,银染后显色。利用PowerMaker 3.25软件计算每对引物的等位基因数(A)、主要等位基因频率(M)、基因多样性指数(He)和多态性信息含量指数(PIC),并进行N-J遗传距离的统计分析;利用Structure 2.3.1分析群体遗传结构。【结果】糜子表型遗传多样性分析表明:9个表型性状分布集中,且绝大部分呈极显著相关;单株粒重和单株穗重遗传变异最丰富,不同省份的资源在表型性状上表现出不同的遗传多样性,山西资源表型遗传多样性最丰富。采用主成分分析法和综合评价法表明,内糜1号的综合性状表现最差,宁糜15号的综合性状表现最好。采用19对SSR引物对96份糜子种质资源进行遗传多样性分析,共检测出112个等位变异;每个位点的等位变异数为3-9个,平均5.9个;平均主要等位基因频率为0.7045;平均基因多样性指数为0.4097;平均多态性信息含量位点百分数为39.2%。不同地理来源糜子种质资源的遗传多样性分析表明,各省份间糜子资源的亲缘关系均较近;山西省资源的基因多样性指数及多态性信息含量百分数最高,分别为0.357和33.01%。基于模型的遗传结构分析和基于遗传距离的聚类分析将试验材料划分为3个类群,两种分类结果有一定相似性,皆与生态环境密切相关。【结论】糜子遗传变异较为丰富,遗传多样性高,尤其是山西糜子资源的遗传多样性最丰富;不同地理来源的糜子种质资源亲缘关系均较近,且其遗传多样性与生态环境密切相关。  相似文献   

9.
目的 中国李资源丰富、分布广泛。更好地明晰不同来源中国李栽培品种的多样性、遗传结构差异以及与同域近缘种的关系,将有利于明确中国李驯化扩散历程以及近缘种在栽培驯化过程中的作用,促进中国李地方品种资源的深入挖掘和新品种的选育。方法 利用均匀分布于基因组的22对SSR分子标记,采用荧光毛细管电泳检测技术对48份种质进行基因分型,其中包括38份不同来源的中国李种质、10份变异类型或近缘种。通过GenAlEx 6.41软件评估22对SSR引物的多态性,对参试种质按不同来源分析遗传多样性;利用NTSYS-pc 2.1软件构建48份材料的树状聚类分析图;并根据贝叶斯模型的Structure 2.2软件分析不同居群间的遗传结构差异。结果 基于48份供试材料的数据,22对SSR引物等位变异范围为3—21个,平均每个位点检测到13.54个;总共检测到298个等位变异,其中有51.8%的等位变异属于稀有等位变异。在不同居群间进行比较,根据平均有效等位变异(Ne)、平均Shannon’s多样性指数(I)、观察杂合度(Ho)和期望杂合度(He)可以看出,南方品种群的多样性最高,其次为东北品种群;而杏李的多样性最低,且明显低于华北品种群。通过分子方差分析,认为中国李的多样性有69%的遗传变异来源于居群内,仅有31%的遗传变异来源于居群间。基于遗传分化系数和Nei’s遗传距离的数据比较,认为不同居群间存在显著的遗传分化,同时不同地理来源种质间存在适当的基因交流。树状聚类分析暗示国外育成品种与我国南方品种群具有较近的亲缘关系;而华北品种群与杏李关系密切;东北品种群与乌苏里李关系紧密。群体结构分析可以将栽培中国李种质资源划分为南方小果脆肉品种群、南方大果品种群(包括国外育成品种)、华北品种群和东北品种群。结论 我国南方地区中国李的多样性最为丰富,按东北品种群、国外品种群、华北品种群顺序依次降低。东北品种群为了提高适应性融入了乌苏里李基因;杏李是从华北品种群中高度驯化后的特化类型,且该类型通过无性繁殖保存了其高度杂合性状态。我国南方江浙地区的大果型种质对国外育成品种起着重要作用。  相似文献   

10.
高帆  张宗文  吴斌 《中国农业科学》2012,45(6):1042-1053
【目的】从分子水平优化并构建用于中国苦荞种质资源遗传多样性分析的SSR分子标记体系,为综合评价中国苦荞种质资源提供依据。【方法】以50份苦荞种质为试验材料,用正交设计法[L16(45)]筛选适用于苦荞SSR标记分析的PCR反应体系,浓度梯度检测最佳胶分离效果,并从250对不同科属作物SSR引物中筛选出19对引物进行苦荞遗传多样性分析。【结果】优化的苦荞SSR反应体系为DNA模板30 ng,Taq酶2.0 U•L-1,dNTP、引物和Mg2+终浓度分别为150 μmol•L-1、0.1 μmol•L-1、2.0 mmol•L-1,总体积为25 μL,6%聚丙烯酰胺凝胶电泳检测。SSR引物筛选率为7.6%,蓼科同属甜荞的SSR引物适用于苦荞SSR扩增。19对引物共检测到157个等位变异,每对SSR引物检测到的等位变异2-11个,平均等位变异(NA)7.42个,平均多态性信息量(PIC)0.888,平均鉴定力(DP)5.684,2对为SSR骨干引物。利用Popgen Ver.1.31软件,当遗传相似度(GS)为0.578时,50份苦荞材料被分为5个组群,聚类结果与苦荞地理分布相关性不大。四川苦荞资源组群各遗传多样性参数均最高,该区域苦荞种质资源多样性最丰富。利用骨干引物可鉴定部分近缘苦荞品种。【结论】构建的SSR分子标记体系适用于中国苦荞种质资源遗传多样性分析,甜荞SSR引物可用于苦荞SSR标记分析,TBP5和Fes2695为苦荞SSR骨干引物,50份苦荞材料遗传多样性丰富,可划分为5个组群。  相似文献   

11.
世界蚕豆种质资源遗传多样性和相似性的ISSR分析   总被引:3,自引:1,他引:2  
【目的】分析国内外蚕豆种质资源的遗传多样性,探索其遗传相似性和遗传结构,为世界蚕豆资源的综合评价和优良种质资源的发掘利用提供依据。【方法】利用ISSR标记技术,对来自世界35个国家的383份蚕豆资源的遗传相似性进行分析。【结果】筛选出的11条ISSR引物共扩增出229条条带,其中多态性条带212条(占93%)。不同地理来源蚕豆资源群的基因多样性指数在0.16—0.28,平均为0.22;遗传丰富度变化范围为104—193,平均为158.5。中国春播区蚕豆资源群遗传多样性最高(H=0.28,NA=193),最低的是美洲资源群体(H=0.16,NA=104)。非加权配对算术平均法(UPGMA)聚类结果表明,中国春播区和秋播区蚕豆资源明显不同;中国蚕豆资源群体与国外资源群间的遗传相似性较远,明显与国外资源相分离;北非和欧洲的蚕豆资源遗传相似性较近。亚洲、欧洲、非洲及中国的蚕豆资源群之间具有明显的地域分布规律。【结论】中国春播区蚕豆资源遗传变异丰富,遗传多样性较高;美洲蚕豆资源遗传基础相对狭窄。蚕豆资源群体遗传多样性差异和遗传相似性与其地理来源、生长习性和生态分布密切相关。  相似文献   

12.
Genetic diversity of 158 accessions of an applied core collection of adzuki bean (Vigna angularis) and 18 wild genotypes were assessed by using 85 microsatellite markers. With an average of 5.81 alleles per locus, 493 alleles were detected, and their distribution frequencies lower than 5% accounted for 73.02% of the total number. The distributions of alleles between the cultivated and the wild adzuki bean germplasm are different, with a higher allelic diversity in the wild germplasm than that of the cultivated ones. An obvious genetic differentiation was also observed between the wild and the cultivated adzuki beans, and SSR markers may be useful in study identification and classification of them. Among cultivated adzuki bean, the genetic similarity coefficient varied from 0.366 to 0.939. Genetic structure analysis can clearly separate the wild genotypes from the cultivated adzuki bean, and also can divide the cultivated ones into different populations, as these populations are closely agreeable with the ecological regions where they originally grow. The results of this study will be useful in arranging local breeding programs, especially in the aspect of parental combinations or identification of progenies. These SSR markers can also provide important information to explain the genetic relationship between the cultivated and wild adzuki beans, and to accelerate the wild gene resources in broadening the gene pool in breeding program.  相似文献   

13.
 利用 12对AFLP引物 ,以饭豆标准品系M 0 0作对照 ,对来自中国、日本、韩国、尼泊尔、印度、不丹的 14 6份小豆栽培种 (Vignaangularisvar.angularis)和野生种 (Vignaangularisvar.nipponensis)种质的基因组DNA进行扩增 ,得到 313条多态性带。据AFLP多态性数据绘制的聚类图 ,可区分其中的 14 3份种质 ,表明小豆物种 (Vi gnaangularis)存在足够的遗传多样性 ,可用于资源材料的准确鉴别与分类。鉴于此 ,采用新开发的利用AFLP数据揭示核苷多样性的Innan’s进化树分析方法 ,进一步将 14 6份小豆资源分成 7个明显不同的地理演化群 ,即中国栽培种、日本栽培种、日本综合群 韩国栽培种、中国台湾野生种、中国野生种、尼泊尔 不丹栽培种和喜马拉雅野生种演化群。就上述地理演化群的遗传多样性、地理分布以及野生种与栽培种之间可能的演化关系进行了分析 ,初步认为栽培小豆至少应当有 4个不同类型的野生祖先和 3个不同的地理起源。  相似文献   

14.
【目的】从分子水平研究国内外黍稷种质资源的遗传多样性差异,为黍稷种质资源的研究、保护和利用提供依据。【方法】用不同地理来源且性状差异显著的6份黍稷种质资源对来自高通量测序技术开发的黍稷基因组SSR引物进行筛选,从而获得条带清晰,稳定性好的63对SSR黍稷基因组引物,利用这63对SSR多态性引物对来自国内外的192份黍稷地方品种和野生种质进行遗传多样性分析。统计各试材在同一引物中的条带情况,并以此来分析试材的遗传多样性与所在群体间的亲缘关系。【结果】63对SSR引物共检测出161个等位变异位点,平均每个SSR位点2.56个;平均Shannon-Weaver指数(I)为0.6275,平均基因多样度(Nei)为0.3874,平均PIC值为0.4855。10个不同地理来源群体间表现出显著的遗传多样性差异,各群体的有效等位变异变化范围较窄,最小的是南方群体,为1.2407±0.4315;最大的是内蒙古高原群体,为1.8846±0.4892。国内群体Shannon-Weaver指数为内蒙古高原东北地区黄土高原西北地区南方地区,而国外Shannon-Weaver指数排序依次为前苏联欧洲蒙古印度美国。从Nei’s基因杂合度分析,观察杂合度(Ho)最小的是印度群体,为0.2372±0.2962,最大的是内蒙古高原群体,为0.3966±0.3250。期望杂合度(He)最小的是美国群体,为0.3114±0.2203;最大的是内蒙古高原群体,为0.4622±0.1862。从国外种、国内栽培种和国内野生种3个大群体来看,野生种质资源有效等位基因数(1.9285±0.5101)、Shannon-Weaver指数(0.6948±0.2852)、Nei基因多样性指数(0.4373±0.1773)远大于国外种和国内栽培种。而对国内外两大群体而言,国内资源的有效等位基因数(1.8145±0.4519)、Shannon-Weaver指数(0.6657±0.2413)和Nei基因多样性指数(0.412±0.1574)均大于国外资源(1.6862±0.4527、0.5897±0.2469、0.3652±0.1655)。UPGMA聚类分析结果显示,10个地理群聚为三大类,内蒙古高原地区、黄土高原地区、东北地区、西北地区、蒙古地区聚为一类,前苏联、美国、印度、欧洲地区聚为一类,南方地区单独聚为一类。其中,来自东北黑龙江齐齐哈尔的泰来小野糜(34号)在截距0.37处被独立分为一支,来自甘肃的野黍子(19号)在截距0.34处被分为独立个体,表明这两个材料与其他材料遗传差异较大。但从整体遗传多样性上来看192份材料国内外群体遗传分化不明显,群体间的亲缘关系较近,且不同群体间材料存在着互相渗透。【结论】内蒙地区、东北地区、黄土高原地区种质资源遗传多样性最丰富,是遗传关系最为复杂的地区,进一步印证了中国是黍稷起源的中心。  相似文献   

15.
用高基元微卫星标记分析中国糜子遗传多样性   总被引:10,自引:3,他引:7  
【目的】开发高基元(4—6)碱基重复微卫星标记,分析种质资源遗传多样性,为糜子遗传和进化研究提供理论基础。【方法】用隶属函数、主成分分析和聚类分析综合评价糜子资源表型多样性,用前期糜子转录组测序获得高基元SSR引物对地理来源差异大的糜子材料进行PCR扩增检测其多态性,用Power Marker 3.25计算遗传多样性参数,用Pop Gen 1.32计算Nei’s遗传距离,用MEGA 5.0进行聚类分析,用Structure 2.2鉴定遗传类群。【结果】96份糜子资源株高和穗长变异最丰富,多样性指数分别为2.08和1.91。PCR扩增发现,占56.29%的85对引物具多态性,其中四、五和六碱基重复引物分别为71对(83.53%)、10对(11.76%)和4对(4.7%)。85个标记扩增产物大小分布为100—450 bp,PIC值平均为0.51,Rp值为1.00—5.75,平均为3.15。四、五和六碱基重复SSR的平均Rp值分别为3.15、2.8和4.0。基于Rp值分析SSR的分布频次,发现85个标记分布区间为0—1、1—2、2—3、3—4、4—5和5—6,分别包含1(1.18%)、15(17.65%)、31(36.47%)、20(23.53%)、12(14.12%)和6(7.06%)个标记,60%(51个)的标记分布在区间2—3和3—4。用85个SSR扩增96份糜子资源,共检测到232个等位变异,每个位点检测到等位变异2—3个,平均2.7294个;62个位点产生3个变异,23个位点产生2个变异;多样性指数为0.2842—1.0633,平均为0.7708;PIC值为0.0400—0.7281,平均为0.4723。不同生态区糜子种质间的遗传距离为0.0093—0.5052(平均为0.1798),遗传一致度为0.6034—0.9907(平均为0.8485)。基于UPGMA将96个糜子基因型聚为4个群组,第一群组主要属于北方春糜子区;第二群主要属于东北春糜子区;第三群组主要属于华北夏糜子区;第四群组主要属于黄土高原春夏糜子区。遗传结构分析将96份试材划分为4个类群,分别代表黄土高原、华北、东北和北方基因库。UPGMA聚类分析和遗传结构分析结果基本一致,均与地理起源相关。【结论】在糜子中构建了85个四、五和六碱基重复微卫星标记,这些高基元SSR的引物分辨率(Rp)高,对不同基因型分辨能力强,PCR扩增多态性好;用其评估中国糜子资源的遗传差异发现,黄土高原春夏糜子区和北方春糜子区资源遗传多样性最丰富。  相似文献   

16.
 【目的】通过揭示茶树资源遗传多样性、遗传结构和遗传分化关系,为资源的有效保护和充分利用提供理论依据。【方法】利用109对核心EST-SSR标记对广东、广西的105份茶树核心资源进行遗传多样性和遗传分化比较分析;同时对广东和广西资源组群间、组群内白毛茶和茶种群间、种群内进行AMOVA分子方差分析,进一步剖析遗传结构,并绘制群体遗传结构图。【结果】109对核心EST-SSR标记共检测到435个等位基因,平均等位基因(NA)3.99个,平均有效等位基因(NE)为2.12,平均Nei's基因多样性(H)为0.59,平均观测杂合度(Ho)为0.32,平均期望杂合度(He)为0.46,平均多态性信息含量(PIC)为0.56。广东茶树资源遗传多样性的上述6个参数均小于广西茶树资源。广东白毛茶NA和H低于广东茶,NE、He、Ho和PIC与茶较为接近;广西白毛茶NA大于广西茶,但是NE、He和H低于茶。F-统计量分析表明白毛茶与茶种群内近交系数(Fis)、种群间近交系数(Fit)和种群遗传分化(Fst)都较低,基因流(Nm)都较高。广东白毛茶与广西白毛茶Fst为0.04,基因交流相对较低为6.26。AMOVA分析显示组群间遗传变异为3.09%,组群内种群间遗传变异为2.22%,种群内遗传变异为94.69%。群体遗传结构显示105份茶树资源可分为3个类群,类群Ⅰ由6份选育品种组成;类群Ⅱ由43份广东资源和16份广西资源组成;类群Ⅲ包括广西36份和广东4份资源。【结论】广东茶树资源遗传多样性程度低于广西。广东白毛茶遗传多样性比广东茶丰富,种群遗传分化低,存在较频繁的基因交流。广东白毛茶遗传多样性低于广西白毛茶,遗传分化相对较高,基因流较低。AMOVA分析显示遗传变异主要分布于广东、广西茶树资源群体内。  相似文献   

17.
新疆籽用西瓜ISSR反应体系的建立及其遗传多样性研究   总被引:2,自引:0,他引:2  
【目的】研究籽用西瓜遗传多样性,对籽用西瓜品种进行遗传多样性和聚类分析,为杂种选育提供一定的理论依据。【方法】以60份籽用西瓜种质资源为材料,对ISSR引物UBC801~UBC900进行筛选。【结果】筛选出多态性较好的ISSR引物10条。利用10条ISSR引物扩增60份籽用西瓜种质资源,共获得44个等位变异,每对引物检测到的等位变异数的变幅为3~7个,平均等位变异数4.4个。其中多态性条带为24条,10条ISSR引物的多态性信息含量(PIC)的变化范围为0.042 3~0.674 0,平均为0.358 2,遗传相似系数的变异范围为0.318~0.992,平均为0.779。利用UPGMA法进行聚类分析,新疆籽用西瓜分为6大组,第一组为材料47(40036),第二组为材料8(新籽瓜8号),第三组为材料10(红秀2号)、11(普通红大片)、12(新籽瓜4号)、13(紫荆红)、14(40002)、15(40004)、16(40008),第四组为材料7(新籽瓜1号),第五组为材料52(40045),其余的都归类为第六组。【结论】ISSR对籽用西瓜种质资源遗传多样性和亲缘关系确定相比其他分子标记更有优势,更为全面的基因组DNA信息,品种间较丰富的遗传多样性信息。利用ISSR标记分析60份籽用西瓜遗传多样性,参试材料来源、籽色、大小不同,亲缘关系差异较大,新疆籽用西瓜种质资源遗传多样性丰富。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号