首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
HZSM-5分子筛催化热裂解油菜秸秆制取精制生物油   总被引:4,自引:3,他引:1  
为了探究分子筛催化剂对精制生物油理化特性的影响和在线催化提质机理,HZSM-5分子筛在固定床反应器上对油菜秸秆真空热解产生的热解蒸气进行在线催化提质试验,研究了催化剂质量、催化剂硅铝比和催化温度等参数对精制油产率和理化特性的影响,并通过气相色谱-质谱联用仪对提质前后生物油的化学组成进行了分析,初步探讨了HZSM-5分子筛在线催化提质机理。研究结果表明,油菜秸秆用量约为150 g,当催化剂质量为60 g,HZSM-5硅铝比为50,催化温度为500℃时,获得的精制油具有较低的氧元素质量分数(27.97%)、较高的高位热值(30.14 MJ/kg)以及较高的氢碳比(0.121)。在该条件下,醛、酸和酮类等非理想产物质量分数分别由提质前的13.71%、11.75%和13.59%降低至3.38%、1.68%和4.48%,而低含氧量的酚类由31.99%大幅增加至65.47%,表明HZSM-5具有良好的催化提质功能。研究结果为生物质的转化利用和在线精制热解蒸气技术的发展提供可靠的试验及理论依据。  相似文献   

2.
以红松松子壳为原料,采用连续热解装置研究了热解反应温度和时间对生物油得率的影响规律,在反应温度为450℃、反应时间为6 min时,生物油得率可达到40.74%,热值可达到22.66 MJ/kg。采用气相色谱质谱联用仪对生物油成分进行了分析,其成分以酚类为主,质量分数约为33.5%;选用HZSM-5及NiO/HZSM-5分子筛催化剂对热解重质油部分分别进行催化改性试验,结果表明:经NiO/HZSM-5分子筛催化剂催化后其中高沸点有机物质量分数降低约13个百分点;其黏度由原来的约3 290 mPa·s大幅度地降低至450 mPa·s,热值则由原来的约26.16 MJ/kg增加到30.33 MJ/kg,增加了16%,同时提高了重质油的燃烧性和稳定性;负载物氧化镍(NiO)的添加提高了HZSM-5催化剂的抗积碳能力。该研究也为后续生物油改性提供了参考。  相似文献   

3.
热解炭化技术的开发对秸秆的能源化利用具有重要意义。试验研究了保温时间与粒度对水稻和棉花秸秆热解产物理化特性及能源转化的影响。结果表明,保温时间从0到120 min中,秸秆生物炭产率先降低后略增加,热解气中CH_4、C_nH_m和H_2百分含量增加,其高位热值和能量转化率增加,而生物炭的pH值、电导率、灰分、固定碳、C、高位热值增加,保温时间为90 min的生物炭的炭化程度最好。秸秆中能量有1.5%~5.4%保留在热解气中,有50%~57%保留在生物炭中。不同粒度相比,粗粉秸秆的生物炭的炭产率、挥发分、H、O、N及碳转化率最高,细粉秸秆热解气中CO和CH_4百分含量、高位热值和能量转化率最高,而超微秸秆生物炭的pH值、灰分、C最高。棉花秸秆生物炭的挥发分、固定碳、C、H、碳转化率、高位热值和能量转化率高于水稻秸秆生物炭。  相似文献   

4.
改性微-介孔催化剂的制备及其催化生物质热解制备芳烃   总被引:2,自引:2,他引:0  
采用K2CO3对HZSM-5催化剂进行处理,制备微孔-介孔多级孔HZSM-5催化剂,研究了碱液浓度(0.2~0.6 mol/L)对制备多级孔催化剂及其多级孔催化剂对催化生物质热解制备芳烃的产率以及选择性的影响规律,同时采用比表面积和孔径分布仪、X射线衍射仪、X射线光电子能谱、扫描电镜、化学吸附仪、傅里叶红外光谱仪、热重分析对催化剂进行了表征,结果表明:碱处理后催化剂依然保持MFI结构,在脱除分子筛中非骨架硅的同时,产生介孔结构,随着预处理浓度的增加,介孔含量增加,晶内介孔的利用率以及分子筛的扩散性能增加,但使总酸量降低,同时,改性催化剂可以明显的提高木质素来源的生物质热解产物芳烃的产率(67.75%~82.81%)降低焦炭的生成(31.26%~28.06%),提高生物油中萘族产物(甲基萘以及二甲基萘)的选择性,使C10+以上芳烃含量增加,当采用0.5 mol/L的K2CO3处理时,单环芳烃质量分数最高为82.81%,而焦炭质量分数最低为28.06%。  相似文献   

5.
为探索木质生物质气固非均相催化热解制备呋喃类化合物新途径,该文以玉米芯为原料,采用MCM-41、活性炭(AC)、Al_2O_3、HZSM-5(Si/Al=38,46,80)、TiO_2和ZrO_2为催化剂,在玉米芯催化热解催化剂筛选的基础上,采用响应曲面法对MCM-41、AC和TiO_2催化热解玉米芯工艺条件进行优化,研究催化剂对热解产物组成和呋喃产率的影响。结果表明,较高比表面积的MCM-41、AC和TiO_2催化剂可明显促进呋喃类化合物的生成,呋喃类产率可分别达到31.43%、28.78%和30.44%,而HZSM-5系列催化剂最低;单个因素影响顺序为催化剂催化热解温度原料与催化剂质量比;催化剂类型和催化热解温度具有明显的交互作用;当催化热解温度为550℃、玉米芯与催化剂质量比为1∶1,采用活性炭为催化剂时,呋喃类化合物产率最高可达35.30%。研究结果可以为基于气固催化反应的木质生物质催化热解制呋喃类化学品提供依据。  相似文献   

6.
为提升生物质炭对生物质热解挥发分的催化重整作用,以Fe_2O_3和CaO作为添加剂制备生物炭-Fe和生物炭-Ca催化剂对两者的催化重整能力进行了试验探讨。试验结果表明:无添加时的生物质炭对玉米秸秆颗粒热解挥发分催化作用明显,800℃时,液相产率较未使用催化剂时减少38.71%,最低可达21.49%。生物炭-Fe催化剂颗粒在800℃时液相产率下降至20.24%,产气率升至51.44%,同时,H2的体积分数增加,热解油中的有机物质被有效抑制;生物炭-Ca催化剂在800℃时液相产率和产气率分别为20.01%和51.96%。生物炭-Ca催化剂可以促进热解气中CH4的生成,降低CO2的体积分数。在本试验条件下,炭基催化剂对生物质热解挥发分催化重整的活性顺序依次为:生物炭-Ca生物炭-Fe生物质炭无催化剂。  相似文献   

7.
秸秆微波水热炭和活性炭理化及电化学特性   总被引:5,自引:5,他引:0  
为了解秸秆微波酸催化水热炭和碱活化活性炭形成机制和理化特性演变规律,该研究开展了不同柠檬酸质量分数下的秸秆微波水热和活性炭的制备试验,并研究了水热炭和活性炭理化及其电化学特性。结果表明,随柠檬酸质量分数的增加,秸秆水热炭的产率、挥发份和H含量减少,而其灰分、固定碳、C和高位热值增加,且酸质量分数为10%后趋于稳定。柠檬酸质量分数为10%时,水热炭的碳微球结构最丰富,其比表面积和孔体积最大,且以中孔为主。10%柠檬酸水热炭在900℃下经KOH活化后的活性炭产率为8%~11%,活化气体产率为32%~35%,且以CO和H_2为主。900℃活性炭的比表面积为1 250~1 570 m~2/g,总孔体积为1.00~1.20 cm3/g,孔径为3.55~4.10 nm,且以中孔和微孔为主。当电流密度为1 A/g,水稻、玉米和油菜秸秆活性炭的比电容分别为160.54、150.12和155.17 F/g,且循环5 000次后的电容保持率分别为91.04%、88.12%和89.06%,表现出较好的循环稳定性。水稻秸秆水热炭和活性炭的产率、灰分、碳转化率、能量转化率、比表面积、总孔体积、比电容和电容保持率最大。  相似文献   

8.
热解温度对回转窑玉米秸秆热解产物理化特性的影响   总被引:1,自引:1,他引:0  
针对北方农业秸秆废弃物产量巨大且无法全部还田导致丢弃和露天焚烧现象激增等问题,该文通过搭建小型回转窑生物质热解装置考察不同热解温度下秸秆热解特性,分析主要产物的产率、元素组成等理化特性指标。结果表明:回转窑内热解温度的增加提高了热解液相产物产率和热解水产率,焦油产率呈先增加后降低趋势。与此同时,热解气总体积逐渐增加,H2含量和CH4含量也有所提高,生物炭产率和热值有所降低。当热解温度从400℃增加至700℃时,焦油产率从12.21%增加至21.70%;当温度进一步增加至800℃时,焦油产率降低至20.13%;相应的焦油热值从400℃时的19 974.0 kJ/kg逐渐增加到800℃时的21 710.0 kJ/kg。高热解温度加快热解过程中的热传递,加剧生物质大分子所含的羟基、羰基等含氧官能团的分解并促进挥发物的产生,进而提高了热解液体产物、热解水和焦油产率。过高的加热温度会加剧挥发分的二次反应,降低焦油产率;更多的含氧杂环结构会随着热解温度提高逐渐分解,因而焦油热值逐渐增加。生物炭产率随着温度增加逐渐降低,生物炭pH值和C/N比均逐渐增加,在兼顾生物炭产率和应用于炭基肥制备所需理化性质的同时需充分考虑热解温度影响。  相似文献   

9.
为研究生物炭作催化剂消减焦油提高热解气品质的效果,以玉米秸秆为原料,以焦油转化率、热解气产率和热解气热值为评价指标,研究重整温度、停留时间和生物炭特性对热解气提质的影响,并分析生物炭作为催化剂重整前后比表面积的变化。研究结果表明,与石英砂(高温裂解)相比,生物炭具有较好的催化特性,且稻壳炭、木屑炭和玉米秸秆炭对焦油的转化率分别为79.8%、78.6%、72.6%,热解气产率分别为39.7%、38.6%、37.9%。随着重整温度和停留时间的增加,热解气产率和焦油转化率增加,而热解气热值仅随着温度升高而增加,当温度为800℃时,热解气热值为17.6 MJ/m~3。800℃催化重整后生物炭比表面积为79.81 m~2/g,高于550℃热解生物炭比表面积37.96 m~2/g,生物炭作催化剂时不但可以提高热解气品质,而且生物炭比表面积也有所增加。  相似文献   

10.
采用低温烘焙技术制备玉米秸秆成型生物炭,可解决玉米秸秆带来的环境污染及资源浪费。研究以玉米秸秆成型颗粒为原料,利用固定床反应器,制备了不同烘焙温度(250~400℃)成型生物炭,采用元素分析、工业分析、能量产率、质量产率、机械性能、疏水性、红外光谱(Fourier transform infrared spectroscopy,FTIR)、扫描电镜(Scanning electron microscopy,SEM)、元素K含量等分析生物炭特性。随烘焙温度升高,热值增加,能量产率降低,400℃时,成型生物炭热值为21.86MJ/kg,能量产率为50.17%。成型生物炭颗粒表面裂纹增多,机械性能降低,350℃烘焙成型生物炭(CSP350)机械性能好于400℃烘焙成型生物炭(CSP400),低于成型生物质颗。烘焙生物炭疏水性提升,可贮藏于室外。成型玉米秸秆经烘焙热解发生了脱水、脱羰基、脱甲基反应,纤维素、半纤维素热解剧烈,木质素开始热解。随温度升高,其孔径呈下降趋势,比表面积增大。结果表明,玉米秸秆成型烘焙生物炭可作为优质生物燃料,适宜制备温度为300~350℃。  相似文献   

11.
为研究不同分子筛催化剂对生物油催化裂解特性的影响,该文采用稀土元素La、非金属元素P以及活泼金属元素Ni对ZSM-5分子筛催化剂进行改性,在连续式固定床反应器中对乙酸乙酯、二丙酮醇、糠醛和愈创木酚等生物油模型化合物进行催化裂解试验,进而对比HY、HZSM-5、ZSM-5催化剂以及改性后ZSM-5催化剂对模型化合物的催化裂解反应特性以及脱氧效果。试验结果表明:在反应温度为400℃、反应质量空速为4/h条件下,经La/P/Ni改性ZSM-5分子筛催化剂,模型化合物有机相收率提高,结焦率下降;HY分子筛所得有机相收率最低,结焦率最高。模型化合物各组分裂解难易程度由易到难为二丙酮醇乙酸乙酯糠醛愈创木酚;改性后ZSM-5分子筛使组分单一转化率和总转化率均出现下降;HZSM-5分子筛作用下,反应转化率达到最高。模型化合物催化裂解脱氧产物以芳香烃为主,经La改性ZSM-5分子筛作用后,其芳香烃选择性较ZSM-5略微上升;P和Ni改性后,芳烃选择性下降;HZSM-5对于芳香烃选择性最高,达7.36%;HY对于芳香烃选择性最低,仅为3.15%。通过液体产物组分分析进一步探讨模型化合物反应路径,从而为生物油的催化裂解提供一定的理论基础和科学依据。  相似文献   

12.
不同Si/Al的氢型分子筛催化热解对生物油特性的影响   总被引:3,自引:3,他引:0  
为考察对于氢型分子筛(HZSM-5)的Si/Al变化和添加量对生物质热解液化的影响,该文通过离子交换法制备HZSM-5催化剂,采用激光粒度分析仪、比表面积及孔径分析仪和X射线衍射仪对催化剂的粒度、孔隙及晶体结构等性质进行表征,并在最佳油产率温度下进行木屑的催化热解。对无催化剂和不同催化条件下得到的生物油进行气相色谱质谱联用分析,结果表明,分子筛作用下,生物油产率明显降低(最大降幅8%),含水率增加。同时,液体产物中醛类、酯类、酮类、呋喃等含氧化合物及酸含量均有所降低,提高了烃类和酚类的含量,峰面积百分比最高达到12.57%和39.36%,对催化剂催化调控改善生物油品质提供了一定的科学依据。  相似文献   

13.
为了进一步提升生物油的品质,该研究采用竹材和低密度聚乙烯(Low-Density Polyethylene, LDPE)为原料,采用金属氧化物和HZSM-5(HZ)为催化剂催化生物质共热解,探索生物质与塑料的混合比例、金属氧化物的种类(HZSM-5、CaO、MgO、CeO_2、La_2O_3和SnO_2)、HZSM-5和MgO的混合比例以及组合方式(分层模式和混合模式)对生物质催化共热解制备生芳烃和生物炭的影响,同时对其添加效果进行分析。结果表明:LDPE和金属氧化物的添加可以有效的促进生物质的转化,降低了生物油的产率(9.76%~23.96%),提高生物油的品质和生物炭的石墨化程度,二者具有明显的协同效果,MgO促进了烷基酚的形成,CaO促进了烯烃的转化,而La_2O_3和SnO_2明显的促进是呋喃的生成。而且混合模式可以有效的提高芳烃的产率,当生物质:LDPE=1:1,HZSM-5:MgO=2:1时,芳烃含量最高为84.99%,苯、甲苯、二甲苯和乙苯(SBTXE)的总含量达到了60.09%,而甲苯和二甲苯含量分别达到了25.97%和16.91%,混合模式有效促进了苯、甲苯和二甲苯的选择性,分层模式有效促进了烷基苯的转化,且MgO的添加明显抑制了稠环芳烃的形成。  相似文献   

14.
ZSM-5催化生物质三组分和松木热解生物油组分分析   总被引:1,自引:1,他引:0  
为了更清晰地研究三大组分(纤维素、木聚糖、木质素)在介孔ZSM-5参与下的催化热解过程,该研究首先对生物质的三大基本组分和云南松木粉进行热解,然后在介孔ZSM-5催化剂存在的条件下对微晶纤维素、木聚糖、碱性木质素三大组分和云南松进行催化热解。采用气质联用仪对生物油的化学组分进行分析。通过对比ZSM-5参与前后的生物油的主要化学组分的变化,对催化剂的催化机理进行探究。研究结果表明,催化热解过程中,介孔ZSM-5将纤维素直接热解得到的β-D阿洛糖、糠醛、3-丙基戊二酸和2,4-戊二烯酸转化为1-甲基萘、2,6-二甲基萘,纤维素催化热解得到的生物油中的芳烃含量为63.89%。半纤维素催化热解过程中,催化剂将生物油中的糠醛从67.78%降低为2.66%,有效提高芳烃化合物,包括萘、2-甲基萘的含量,催化热解后得到的生物油中总芳烃含量达到36.81%。木质素催化热解过程中,介孔ZSM-5有效降低生物油中2,6-二叔丁基对甲酚的量(从82.33%降至77.97%),并大幅地提高1,8-二甲基萘和1,7-二甲基萘的量,生物油中总芳烃相对含量达到14.14%。云南松催化热解过程中,催化剂有效降低云南松直接热解得到生物油中2-甲氧基-4-甲基苯酚和(Z)-异丁子香酚的含量,并将芳烃化合物总量提高到53.99%(主要是1-甲基萘、1-亚甲基-1氢-茚和2,6-二甲基萘)。随着催化剂使用次数的增加,生物油中含氧化合物相对含量增加,烃类化合物的相对含量明显降低,从53.99%降至43.32%,元素分析结果表明生物油中的碳含量逐渐减少,氧含量逐渐增加。但是,催化剂经过焙烧再生后,催化活性基本完全恢复。  相似文献   

15.
以农业典型生物质(稻草)为原料,Na2CO3、K2CO3和FeHZSM-5为液化催化剂,考察了稻草在高温高压反应釜中的液化行为。实验重点考察了不同碱性物质与催化剂的添加对液化实验的影响,添加NaOH、KOH和催化剂在共溶剂和纯水溶剂液化的液效果对比以及NaOH、KOH和催化剂的添加对共溶剂液化产物性质的影响。反应在300℃下进行,碱性物质和催化剂的添加量均为1g。结果表明,碱性物质的添加能有效促进稻草在共溶剂中的液化反应,其中添加NaOH的乙醇-水共溶剂液化效果最好,使产物中油1相产率由38.64%提高到53.27%,转化率由85.31%提高到90.54%。通过对产物GC—MS结果对比表明,NaOH可以提高烷烃类物质在生物油中的比例,催化剂FeHZSM-5可以促进芳香族化合物的生成。  相似文献   

16.
生物基呋喃与甲醇耦合催化热解制备芳烃化合物   总被引:1,自引:1,他引:0  
为了提高芳烃的选择性产率和减少催化剂的积碳,以生物基呋喃为原料,以甲醇为耦合试剂进行催化共热解,探讨工艺条件对芳烃的选择性产率的影响,同时对其转化路径以及催化剂的积碳进行分析。结果表明:呋喃与甲醇耦合协同催化共热解可以有效的提高芳烃的选择性产率,二者具有明显的协同效应,甲醇的添加促进了甲醇制烯烃(methanol to olefin,MTO)反应、Diels-Alder环加成反应以及苯烷基化反应的发生,高温促使多烷基化合物以及萘及其同系物选择性产率的增加;强酸性促进了甲醇的脱水以及Diels-Alder环加成反应;同时,羰基抑制了呋喃环和烯烃的Diels-Alder反应,而羟基的存在有效的促进了甲苯以及二甲苯的生成,因此,当采用HZSM-5(SiO2/Al2O3=25)为催化剂,当热解温度为500℃,催化温度为550℃,MF∶甲醇=1∶5,物质的进样量为0.2 mL/min时,其芳烃的选择性产率达到99.73%,积碳量达到11.06%,苯、甲苯、二甲苯以及乙苯的总含量达到40.49%,萘及其同系物的含量仅为10.15%,有效的提高了烷基苯的选择性产率。  相似文献   

17.
玉米秸秆在等离子体加热流化床上的快速热解液化研究   总被引:15,自引:5,他引:15  
为了进一步研究生物质热解液化技术,寻找较为理想的生物油产率所对应的试验条件,设计制作了以等离子体为主热源的流化床热解液化装置,反应器的内径为52 mm,高1150 mm。以玉米秸秆粉为原料在不同温度、不同喂料速率下进行一系列的热解液化试验。试验结果表明:喂料速率在0.6~0.7 kg/h时,生物油产率较高;反应温度升高,生物油产率增高,但是当反应温度超过750 K时,产率反而随温度的上升而下降。使用色质联用仪(GC-MS)对生物油进行了成分分析,4种试验条件下制取生物油的主要成分均为乙酸、羟基丙酮、水、乙醛、呋喃等,试验条件不同各主要成分的相对含量有所不同。高含水量和含氧量降低了生物油的热值和稳定性,容易发生聚合反应,必须经过改性后才能应用。所采用的试验装置及试验方法亦可用于以其它原料获取生物油的研究。  相似文献   

18.
生物质热裂解生物油精制的研究进展   总被引:10,自引:5,他引:5  
生物质热裂解生物油的高含氧量、低热值和化学不稳定等特性在一定程度上影响了生物油的广泛应用,因此必须对生物油进行精制,以改善生物油的品质.该文从催化加氢、催化裂解、气相催化、水蒸气重整和乳化等方面详细阐述了生物油精制的研究进展,指出了生物油精制的发展方向,以期为生物油的应用提供参考.  相似文献   

19.
生物质快速热裂解主要参数对产物产率及其分布的影响   总被引:14,自引:2,他引:14  
在生物质喂入率为0.8~2.0 kg·h-1的流化床上以木屑为原料进行了快速热裂解试验,系统研究了木屑热裂解过程中的流化床反应器温度、生物质粒径和气相滞留期三个主要参数对热裂解产物产率的影响。结果表明,当反应器温度在450~600℃之间变化时,在500℃条件下,生物油产率最高,其值为53.33%,而木炭及不可冷凝气体产率分别为8.97%和37.70%。当温度为500℃,木屑粒径在0.90 mm以下时,粒径在0.45~0.60 mm范围内的生物油产率最大,达到58.23%,这时木炭产率为8.23%。对粒径小于0.20 mm的木屑在温度500℃,气相滞留期0.80, 1.20, 1.50 s三个量级上的热裂解表明,气相滞留期为0.80 s时,生物油产率达到最大值为62.60%。但是,当气相滞留期较长时(1.50 s),生物油产率稍有下降。生物油是极性有机物与水的可溶混合物。因此,木屑快速热裂解生产液体燃料具有较大的潜力。  相似文献   

20.
生物质在熔盐中的热裂解特性   总被引:1,自引:0,他引:1  
为了研究生物质在熔盐中的热裂解特性,在自行设计的生物质热裂解反应器中,以熔盐热裂解生物质,考察了裂解温度、FeCl2含量和原料种类对生物质热裂解特性的影响,测定了生物油的物性参数,并用气相色谱-质谱(GC-MS)分析了生物油的主要组成。结果表明:在物质的量比为7︰6的ZnCl2和KCl混合熔盐中添加物质的量分数为5% FeCl2裂解生物质,温度对热裂解的影响显著,生物油得率随温度先升高后降低,存在最大值,以水稻秸秆为原料相对应的温度为525℃,最高生物油得率约为18%;添加FeCl2能提高生物油得率;以纤维素为原料裂解制得的生物油含水率小于以水稻秸秆为原料的生物油含水率;生物油含水率较高,其密度与水相近,黏度比水略大,灰分少,pH值为2.5~3.0;生物油成分复杂,含甲氧基类有机物较多,需改性后使用。该研究为熔盐热裂解生物质制取生物油提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号