首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 343 毫秒
1.
HZSM-5分子筛催化热裂解油菜秸秆制取精制生物油   总被引:4,自引:3,他引:1  
为了探究分子筛催化剂对精制生物油理化特性的影响和在线催化提质机理,HZSM-5分子筛在固定床反应器上对油菜秸秆真空热解产生的热解蒸气进行在线催化提质试验,研究了催化剂质量、催化剂硅铝比和催化温度等参数对精制油产率和理化特性的影响,并通过气相色谱-质谱联用仪对提质前后生物油的化学组成进行了分析,初步探讨了HZSM-5分子筛在线催化提质机理。研究结果表明,油菜秸秆用量约为150 g,当催化剂质量为60 g,HZSM-5硅铝比为50,催化温度为500℃时,获得的精制油具有较低的氧元素质量分数(27.97%)、较高的高位热值(30.14 MJ/kg)以及较高的氢碳比(0.121)。在该条件下,醛、酸和酮类等非理想产物质量分数分别由提质前的13.71%、11.75%和13.59%降低至3.38%、1.68%和4.48%,而低含氧量的酚类由31.99%大幅增加至65.47%,表明HZSM-5具有良好的催化提质功能。研究结果为生物质的转化利用和在线精制热解蒸气技术的发展提供可靠的试验及理论依据。  相似文献   

2.
以红松松子壳为原料,采用连续热解装置研究了热解反应温度和时间对生物油得率的影响规律,在反应温度为450℃、反应时间为6 min时,生物油得率可达到40.74%,热值可达到22.66 MJ/kg。采用气相色谱质谱联用仪对生物油成分进行了分析,其成分以酚类为主,质量分数约为33.5%;选用HZSM-5及NiO/HZSM-5分子筛催化剂对热解重质油部分分别进行催化改性试验,结果表明:经NiO/HZSM-5分子筛催化剂催化后其中高沸点有机物质量分数降低约13个百分点;其黏度由原来的约3 290 mPa·s大幅度地降低至450 mPa·s,热值则由原来的约26.16 MJ/kg增加到30.33 MJ/kg,增加了16%,同时提高了重质油的燃烧性和稳定性;负载物氧化镍(NiO)的添加提高了HZSM-5催化剂的抗积碳能力。该研究也为后续生物油改性提供了参考。  相似文献   

3.
为研究不同分子筛催化剂对生物油催化裂解特性的影响,该文采用稀土元素La、非金属元素P以及活泼金属元素Ni对ZSM-5分子筛催化剂进行改性,在连续式固定床反应器中对乙酸乙酯、二丙酮醇、糠醛和愈创木酚等生物油模型化合物进行催化裂解试验,进而对比HY、HZSM-5、ZSM-5催化剂以及改性后ZSM-5催化剂对模型化合物的催化裂解反应特性以及脱氧效果。试验结果表明:在反应温度为400℃、反应质量空速为4/h条件下,经La/P/Ni改性ZSM-5分子筛催化剂,模型化合物有机相收率提高,结焦率下降;HY分子筛所得有机相收率最低,结焦率最高。模型化合物各组分裂解难易程度由易到难为二丙酮醇乙酸乙酯糠醛愈创木酚;改性后ZSM-5分子筛使组分单一转化率和总转化率均出现下降;HZSM-5分子筛作用下,反应转化率达到最高。模型化合物催化裂解脱氧产物以芳香烃为主,经La改性ZSM-5分子筛作用后,其芳香烃选择性较ZSM-5略微上升;P和Ni改性后,芳烃选择性下降;HZSM-5对于芳香烃选择性最高,达7.36%;HY对于芳香烃选择性最低,仅为3.15%。通过液体产物组分分析进一步探讨模型化合物反应路径,从而为生物油的催化裂解提供一定的理论基础和科学依据。  相似文献   

4.
生物油模型化合物催化裂解机理   总被引:6,自引:5,他引:1  
为探索生物油催化裂解反应特性和催化作用机理,该文采用HZSM-5分子筛催化剂在550℃对生物油典型模型化合物(羟基丙酮、乙酸乙酯、愈创木酚)进行了催化裂解反应,研究模型化合物催化裂解特性和反应机理以及催化剂失活性质.试验结果显示:不含苯环的模型化合物催化裂解液体产物以芳烃为主,含氧化合物含量较低;羟基丙酮和乙酸乙酯的裂化气体产物分别以CO和烯烃为主.酚类模型化合物催化裂解液体产物仍以酚类为主,芳烃次之,说明苯酚类物质结构相对稳定,气体产物中烯烃含量约30%.根据气液产物分布,推测生物油催化裂解过程主要发生脱氧和环化反应,并对芳烃和烯烃有较好的选择性,为探索生物油催化裂解机理研究提供了理论依据.  相似文献   

5.
改性微-介孔催化剂的制备及其催化生物质热解制备芳烃   总被引:2,自引:2,他引:0  
采用K2CO3对HZSM-5催化剂进行处理,制备微孔-介孔多级孔HZSM-5催化剂,研究了碱液浓度(0.2~0.6 mol/L)对制备多级孔催化剂及其多级孔催化剂对催化生物质热解制备芳烃的产率以及选择性的影响规律,同时采用比表面积和孔径分布仪、X射线衍射仪、X射线光电子能谱、扫描电镜、化学吸附仪、傅里叶红外光谱仪、热重分析对催化剂进行了表征,结果表明:碱处理后催化剂依然保持MFI结构,在脱除分子筛中非骨架硅的同时,产生介孔结构,随着预处理浓度的增加,介孔含量增加,晶内介孔的利用率以及分子筛的扩散性能增加,但使总酸量降低,同时,改性催化剂可以明显的提高木质素来源的生物质热解产物芳烃的产率(67.75%~82.81%)降低焦炭的生成(31.26%~28.06%),提高生物油中萘族产物(甲基萘以及二甲基萘)的选择性,使C10+以上芳烃含量增加,当采用0.5 mol/L的K2CO3处理时,单环芳烃质量分数最高为82.81%,而焦炭质量分数最低为28.06%。  相似文献   

6.
为了进一步提升生物油的品质,该研究采用竹材和低密度聚乙烯(Low-Density Polyethylene, LDPE)为原料,采用金属氧化物和HZSM-5(HZ)为催化剂催化生物质共热解,探索生物质与塑料的混合比例、金属氧化物的种类(HZSM-5、CaO、MgO、CeO_2、La_2O_3和SnO_2)、HZSM-5和MgO的混合比例以及组合方式(分层模式和混合模式)对生物质催化共热解制备生芳烃和生物炭的影响,同时对其添加效果进行分析。结果表明:LDPE和金属氧化物的添加可以有效的促进生物质的转化,降低了生物油的产率(9.76%~23.96%),提高生物油的品质和生物炭的石墨化程度,二者具有明显的协同效果,MgO促进了烷基酚的形成,CaO促进了烯烃的转化,而La_2O_3和SnO_2明显的促进是呋喃的生成。而且混合模式可以有效的提高芳烃的产率,当生物质:LDPE=1:1,HZSM-5:MgO=2:1时,芳烃含量最高为84.99%,苯、甲苯、二甲苯和乙苯(SBTXE)的总含量达到了60.09%,而甲苯和二甲苯含量分别达到了25.97%和16.91%,混合模式有效促进了苯、甲苯和二甲苯的选择性,分层模式有效促进了烷基苯的转化,且MgO的添加明显抑制了稠环芳烃的形成。  相似文献   

7.
在1 L反应釜中对松木屑进行液化试验,采用3种不同溶剂提取固液混合物,从而得到4相油产物。同时研究了反应温度、催化剂对各相产率和组成的影响。研究结果表明,未加催化剂时,在320℃条件下可获得最大油产率;在300℃条件下使用4种不同催化剂,经分析得出负载Fe3+的分子筛催化剂表现出最好的催化效果,产油率达到42.8%,与未加催化剂相比生物油产率提高了9.7%,渣产率降低了5.8%。采用气质联用(GC-MS)对生物油组分进行分析,结果表明:与未加催化剂相比,改性分子筛可以使生物油中长链化合物所占比例明显减小,而主要物质2,6-二丁基羟基甲苯(BHT)的比例显著提高,达到50%以上。添加金属改性催化剂提高了生物质的产油率而且为生产高附加值的化工产品提供了新途径。  相似文献   

8.
HZSM-5和MCM-41分子筛催化剂比例对油菜秸秆热解的影响   总被引:1,自引:1,他引:0  
选取油菜秸秆为原料,利用不同比例均匀混合的HZSM-5/MCM-41进行在线催化热解油菜秸秆制备生物油试验,根据生物油有机相的理化特性、FT-IR、GC-MS分析和催化剂的BET分析结果,研究HZSM-5与MCM-41的混合比例对生物油品质的影响规律.结果表明随着混合催化剂中MCM-41质量分数的增加,生物油有机相产率、密度、运动黏度及O质量分数先减少后增加,C质量分数及高位热值先升高后降低,1,8-二甲基萘、对二甲苯、甲基萘等芳香烃类物质的选择性呈现先增加后减少的变化趋势,生物油有机相中羰基类物质的质量分数先减少后增加,酸性物质持续减少.当HZSM-5与MCM-41以1∶1混合时,生物油产率为18.68%,高位热值高达34.31 MJ/kg,生物油中烃类物质的质量分数为53.83%,羰基类物质的质量分数为6.35%.混合催化剂活性随MCM-41质量分数增加逐渐提高,当MCM-41质量分数超过50%时,混合催化剂的催化活性趋于稳定.  相似文献   

9.
ZSM-5催化生物质三组分和松木热解生物油组分分析   总被引:1,自引:1,他引:0  
为了更清晰地研究三大组分(纤维素、木聚糖、木质素)在介孔ZSM-5参与下的催化热解过程,该研究首先对生物质的三大基本组分和云南松木粉进行热解,然后在介孔ZSM-5催化剂存在的条件下对微晶纤维素、木聚糖、碱性木质素三大组分和云南松进行催化热解。采用气质联用仪对生物油的化学组分进行分析。通过对比ZSM-5参与前后的生物油的主要化学组分的变化,对催化剂的催化机理进行探究。研究结果表明,催化热解过程中,介孔ZSM-5将纤维素直接热解得到的β-D阿洛糖、糠醛、3-丙基戊二酸和2,4-戊二烯酸转化为1-甲基萘、2,6-二甲基萘,纤维素催化热解得到的生物油中的芳烃含量为63.89%。半纤维素催化热解过程中,催化剂将生物油中的糠醛从67.78%降低为2.66%,有效提高芳烃化合物,包括萘、2-甲基萘的含量,催化热解后得到的生物油中总芳烃含量达到36.81%。木质素催化热解过程中,介孔ZSM-5有效降低生物油中2,6-二叔丁基对甲酚的量(从82.33%降至77.97%),并大幅地提高1,8-二甲基萘和1,7-二甲基萘的量,生物油中总芳烃相对含量达到14.14%。云南松催化热解过程中,催化剂有效降低云南松直接热解得到生物油中2-甲氧基-4-甲基苯酚和(Z)-异丁子香酚的含量,并将芳烃化合物总量提高到53.99%(主要是1-甲基萘、1-亚甲基-1氢-茚和2,6-二甲基萘)。随着催化剂使用次数的增加,生物油中含氧化合物相对含量增加,烃类化合物的相对含量明显降低,从53.99%降至43.32%,元素分析结果表明生物油中的碳含量逐渐减少,氧含量逐渐增加。但是,催化剂经过焙烧再生后,催化活性基本完全恢复。  相似文献   

10.
为探索木质生物质气固非均相催化热解制备呋喃类化合物新途径,该文以玉米芯为原料,采用MCM-41、活性炭(AC)、Al_2O_3、HZSM-5(Si/Al=38,46,80)、TiO_2和ZrO_2为催化剂,在玉米芯催化热解催化剂筛选的基础上,采用响应曲面法对MCM-41、AC和TiO_2催化热解玉米芯工艺条件进行优化,研究催化剂对热解产物组成和呋喃产率的影响。结果表明,较高比表面积的MCM-41、AC和TiO_2催化剂可明显促进呋喃类化合物的生成,呋喃类产率可分别达到31.43%、28.78%和30.44%,而HZSM-5系列催化剂最低;单个因素影响顺序为催化剂催化热解温度原料与催化剂质量比;催化剂类型和催化热解温度具有明显的交互作用;当催化热解温度为550℃、玉米芯与催化剂质量比为1∶1,采用活性炭为催化剂时,呋喃类化合物产率最高可达35.30%。研究结果可以为基于气固催化反应的木质生物质催化热解制呋喃类化学品提供依据。  相似文献   

11.
以农业典型生物质(稻草)为原料,Na2CO3、K2CO3和FeHZSM-5为液化催化剂,考察了稻草在高温高压反应釜中的液化行为。实验重点考察了不同碱性物质与催化剂的添加对液化实验的影响,添加NaOH、KOH和催化剂在共溶剂和纯水溶剂液化的液效果对比以及NaOH、KOH和催化剂的添加对共溶剂液化产物性质的影响。反应在300℃下进行,碱性物质和催化剂的添加量均为1g。结果表明,碱性物质的添加能有效促进稻草在共溶剂中的液化反应,其中添加NaOH的乙醇-水共溶剂液化效果最好,使产物中油1相产率由38.64%提高到53.27%,转化率由85.31%提高到90.54%。通过对产物GC—MS结果对比表明,NaOH可以提高烷烃类物质在生物油中的比例,催化剂FeHZSM-5可以促进芳香族化合物的生成。  相似文献   

12.
活化赤泥催化热解玉米芯木质素制备高值单酚   总被引:1,自引:1,他引:0  
木质素富含芳香基团,对其催化热解可制取高值单酚,然而木质素热解气组分复杂,易导致单酚收率低及催化剂快速积碳失活,不利于提高经济效益。该研究利用酸溶-碱沉淀耦合焙烧处理方法制备低成本活化赤泥催化材料,研究活化赤泥催化热解玉米芯木质素制取高值单酚化学品的影响规律,同时对玉米芯木质素及活化赤泥催化剂进行结构表征,并对活化赤泥的催化性能及应用潜能进行分析。结果表明:赤泥活化处理过程可显著改善其自身的表面形貌、孔结构和催化性能;相比于木质素常规热解,活化赤泥提升了生物油中苯酚、烷基酚等高值单酚的含量(60.38%);与商业分子筛催化剂相比,低成本活化赤泥可高效制取单酚,且具备较好的循环使用性能,能作为商业介孔分子筛的有效补充;同时赤泥和木质素2种废弃物耦合共处理,具备潜在的经济与生态环境效益。研究成果为赤泥和木质素等固废的资源化利用提供基础参考。  相似文献   

13.
生物基呋喃与甲醇耦合催化热解制备芳烃化合物   总被引:1,自引:1,他引:0  
为了提高芳烃的选择性产率和减少催化剂的积碳,以生物基呋喃为原料,以甲醇为耦合试剂进行催化共热解,探讨工艺条件对芳烃的选择性产率的影响,同时对其转化路径以及催化剂的积碳进行分析。结果表明:呋喃与甲醇耦合协同催化共热解可以有效的提高芳烃的选择性产率,二者具有明显的协同效应,甲醇的添加促进了甲醇制烯烃(methanol to olefin,MTO)反应、Diels-Alder环加成反应以及苯烷基化反应的发生,高温促使多烷基化合物以及萘及其同系物选择性产率的增加;强酸性促进了甲醇的脱水以及Diels-Alder环加成反应;同时,羰基抑制了呋喃环和烯烃的Diels-Alder反应,而羟基的存在有效的促进了甲苯以及二甲苯的生成,因此,当采用HZSM-5(SiO2/Al2O3=25)为催化剂,当热解温度为500℃,催化温度为550℃,MF∶甲醇=1∶5,物质的进样量为0.2 mL/min时,其芳烃的选择性产率达到99.73%,积碳量达到11.06%,苯、甲苯、二甲苯以及乙苯的总含量达到40.49%,萘及其同系物的含量仅为10.15%,有效的提高了烷基苯的选择性产率。  相似文献   

14.
落叶松木材生物油组分分析和表征   总被引:2,自引:1,他引:1  
为了更加合理、高效的利用落叶松木材快速热解生物油与酚醛树脂制备新型胶黏剂,必须对快速热解生物油的主要组分进行全面、透彻的分析。本文采用气质联用仪(GC-MS)对生物油组分进行定性分析;采用气相色谱(GC)重点对生物油中的酚类物质进行定量分析;采用傅立叶变换红外光谱(FT-IR)对生物油旋转蒸发后得到的物质(重质油)进行结构表征。通过分析得到生物油组分主要包括羧酸类、醚类、酚类、醇类、醛类、烷烃类等有机化合物。结果表明,不同工况条件下生物质油中酚类物质质量分数为4%~15%,最大值为14.15%。  相似文献   

15.
互花米草在乙醇-水体系中直接液化制备生物油   总被引:1,自引:0,他引:1  
生物质因其储量丰富、来源广泛、碳中和等优势被认为是最具有应用前景的生产替代燃料的原料。在容积50 m L的小型高温高压反应釜中,利用醇-水共溶剂直接液化互花米草制备生物油,考察反应温度、醇-水共溶剂中乙醇体积分数、液料比对液化产物分布的影响,分析了原料的热重特性及生物油的主要成分。结果表明:随着升温速率的增加,互花米草的热失重曲线(thermogravimetric,TG)和微分热重曲线(differential thermogravimetric,DTG)基本保持不变,但却发生了不同程度的横向移动,出现明显的滞后现象,这是由温度和时间共同作用的结果;正交优化操作条件为温度340℃、乙醇体积分数50%、液料比10 m L/g,此时生物油产率高达44.2%,而残渣率仅为12%;与单一溶剂相比,醇-水共溶剂对互花米草的液化具有明显的协同作用,在提高产油率的同时能够显著改善生物油的品质;生物油的气相色谱-质谱分析表明生物油是一种组分复杂的含氧有机混合物,包括酸类、酚类、酯类、呋喃等,主要成分为酚类和酯类,相对含量分别为29.62%和11.27%;乙醇能够与酸发生酯化反应生成酯类,而酚类主要来自原料中木质素的降解;以乙醇体积分数为50%的醇-水共溶剂作为液化介质时,生物油的能量回收率为76.5%,明显高于以水或乙醇作为单一溶剂时液化所得生物油的能量回收率,因而醇-水共溶剂是生物质直接液化中非常有前景的液化介质。  相似文献   

16.
木质素目前是唯一可持续生产芳香基化合物的可再生资源。然而,当前绝大多数的木质素未能得到有效利用。热解可以将木质素快速转化为生物炭、生物油和生物气等产物并实现其资源化和高值化利用的有效途径。愈创木基单元是针叶木木质素的主要组成单元,且其结构中的甲氧基和酚羟基等官能团在木质素中广泛存在,因此作为模型化合物被广泛应用。愈创木酚类化合物直接热解产物以苯酚类和邻苯二酚类化合物为主,且热解温度对其热解过程具有一定影响,提高热解温度提高转化率且产生少量芳烃和更多的烯烃,且愈创木基结构单元的C4取代基官能团对愈创木酚直接热解的影响较小。分子筛由于具有独特结构和酸性位点,是催化裂解愈创木酚脱氧制备芳烃和单酚的有效催化剂。催化热解反应条件(如热解温度、重时空速和原料分压等)对催化热解产物具有重要影响;且在热解过程中添加氢供体可以显著提高愈创木酚脱氧率并降低催化剂的积碳。热解机理方面,愈创木酚基化合物直接热解反应主要反应途经是自由基反应,且结构单元中的甲氧基与焦炭形成具有直接关系。初步热解产物邻苯二酚及其衍生的邻羟基苯醌是形成气体产物的重要中间体。与直接热解不同的是,愈创木酚催化热解的主要反应机理是"烃池机理"。该研究通过对愈创木酚类化合物直接热解研究、催化热解研究和反应机理等方面进行总结和综述,期望加深对木质素热解过程的理解,为木质素热解产物的调控提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号