首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
本试验分别对发酵床猪舍和传统猪舍的H2S和NH3浓度进行测定。上午8时发酵床猪舍H2S(mg/m3)浓度为:保育舍(3.14±0.32)、母猪舍(2.25±0.47)、育肥舍(2.31±0.21),NH3(mg/m3)浓度为:保育舍(2.54±0.62)、母猪舍(4.61±0.94)、育肥舍(1.24±0.75);传统猪舍H2S(mg/m3)浓度为:保育舍(5.42±1.63)、母猪舍(6.41±1.73)、育肥舍(7.92±1.46),NH3(mg/m3)浓度为:保育舍(4.84±0.87)、母猪舍(7.42±1.15)、育肥舍(8.26±1.35)。试验结果表明,发酵床猪舍H2S和NH3浓度显著低于传统猪舍。  相似文献   

2.
试验为了研究发酵床育肥猪舍与实心地面育肥猪舍有害气体的浓度变化,分别检测NH_3、H_2S及CO_2浓度,为育肥猪生态养殖,粪便除臭及环境保护提供理论依据。试验随机选取健康、体重60kg左右、品种一致的育肥猪400头平均分为两组。发酵床猪舍为试验组,实心地面猪舍为对照组,在为期一个月的试验中每天分不同的时间、高度进行NH_3、H_2S及CO_2浓度检测。在相同条件下发酵床组测得的NH_3及H_2S浓度要低于在实心地面组(P0.05);而CO_2浓度是发酵床组高于实心地面组。发酵床猪舍有效降低NH_3及H_2S的浓度,但会使CO_2浓度升高。  相似文献   

3.
比较不同气候条件下不同通风方式对两层两列式网床鸭舍环境状况的影响。分别于寒冷(0~15℃),适宜(15~25℃)与炎热(25℃)气候时饲养肉鸭,每次采用自然、纵向、横向与混合4种通风方式,检测舍内温度、湿度、气压、风速、NH_3、CO_2、PM_(10)、PM_(2.5)、气载细菌总数、大肠菌群及葡萄球菌的浓度变化。结果表明:寒冷气候时,3种机械通风较自然通风均可显著降低鸭舍内湿度,其中横向通风未显著降低舍温;3种气候条件下,采用纵向与混合通风方式时鸭舍内NH_3、CO_2浓度均为最低,其中纵向通风改善颗粒物与气载微生物浓度效果最佳。4种通风方式NH_3、CO_2浓度分别为1.1~3.7 mg/m~3、911~2 607 mg/m~3,PM_(10)与PM_(2.5)浓度分别为234~551μg/m~3、166~361μg/m~3,气载细菌总数为5.18~5.78 lg(CFU/m~3),其中大肠菌群占细菌总数比例2%。此外,湿度与PM_(10)、PM_(2.5)间,PM_(10)与气载细菌总数间均呈显著正相关。纵向通风为两层两列式网床鸭舍最优通风模式。  相似文献   

4.
本试验分别对发酵床猪舍和传统猪舍的H2S和NH3浓度进行测定。上午8时发酵床猪舍H2S(mg/m3)浓度为:保育舍(3.14+0.32)、母猪舍(2.25±0.47)、育肥合(2.31±0.21),NH3(mg/3)浓度为:保育舍(2.54±0.62)、母猪舍(4.61±0.94)、育肥舍(1.24±0.75);传统猪舍H2S(mg/m3)浓度为:保育舍(5.42±1.63)、母猪舍(6.41±1.73)、育肥舍(7.92±1.46),NH3(mg/m3)浓度为:保育舍(4.84±0.87)、母猪舍(7.42±1.15)、育肥舍(8.26±1.35)。试验结果表明,发酵床猪舍H2S和NH3浓度显著低于传统猪舍。  相似文献   

5.
为了分析小金县封闭式牦牛育肥舍内外冬季环境指标,采用常规检测方法,对拴系牦牛舍内外环境指标进行了检测。结果表明:早上8:00和19:00舍内外的温度差异显著(P<0.05),中午13:00的温度差异不显著(P>0.05);舍内外的湿度差异不显著(P>0.05);舍外风速差异极显著(P<0.01);舍内外CO_2和NH3浓度差异极显著(P<0.01);舍内温度为4.38±0.76℃~13.65±1.36℃、湿度为47.23±6.43%~59.38±6.31%、风速为0.04±0.02m/s~0.07±0.05m/s、CO2浓度为825±70mg/m~3~982±65 mg/m~3、NH3浓度为0.46±0.11 mg/m3~0.81±0.09 mg/m~3。因此,这些牦牛短期育肥圈舍内外环境指标对牦牛育肥生产具有现实的指导意义。  相似文献   

6.
针对北京地区发酵床猪舍夏季热应激严重以及冬季通风不足的问题,试验在发酵床猪舍改造安装湿帘-风机负压通风降温系统,研究其对冬夏季节舍内热环境和空气质量的影响。结果表明:夏季在舍外日平均温度33.7℃时,与对照舍相比,妊娠试验舍和育肥试验舍内日平均温度分别低3.0℃和2.8℃(P0.05),有效环境温度(EET)分别低10.0℃和9.8℃(P0.01),猪只处于舒适区域而对照舍猪只处于热应激水平;在高温时刻14:00,妊娠试验舍内发酵床表面温度、母猪的呼吸频率和皮肤温度比妊娠对照舍分别低2.9℃、17.2次/min和1.6℃(P0.05)。冬季在气温较高时段开启小风量风机短时间通风期间,试验舍内温度降低0.4~1.3℃,NH_3和CO_2浓度及细菌总数降低幅度分别为58.1%~71.2%、49.6%~53.5%和21.9%~36.0%;当舍内相对湿度75%时机械通风后舍内PM_(2.5)和PM_(10)降低幅度分别为12.3%~20.0%和11.3%~24.9%,当舍内相对湿度75%时机械通风会增加舍内的粉尘浓度。因此,发酵床猪舍使用湿帘-风机系统既能满足夏季降温通风的需要,还能在冬季潮湿环境中改善空气质量,但冬季在适宜的相对湿度条件下应控制较小的气流速度。  相似文献   

7.
北京地区发酵床养猪方式冬夏季环境状况测试与分析   总被引:1,自引:0,他引:1  
本试验在冬、夏两季选取北京某猪场有窗密闭式和塑料大棚式2种样式、漏缝地板和发酵床2种地面形式的育肥猪舍进行环境监测,综合评价不同季节、不同建筑样式下发酵床在减少猪舍有害气体、调节温湿度等方面的效果。结果表明:冬季用简易热风炉供暖的有窗密闭漏缝地板猪舍日平均温度、氨气和硫化氢的浓度与不供暖的有窗密闭发酵床舍无显著差异(P>0.05),但发酵床舍二氧化碳含量较高(P<0.05),夏季时,发酵床能显著降低舍内氨气和硫化氢浓度(P<0.05),但床面日平均温度、猪舍空气日平均温度和日最高温度均极显著地高于有窗密闭漏缝地板舍(P<0.01),猪的增重明显低于漏缝地板舍,大棚式发酵床舍空气日平均温度和日最高温度又显著高于有窗密闭发酵床舍(P<0.05),有窗密闭发酵床舍又显著高于有窗实体地面舍(P<0.05)。因此,做好冬,夏季发酵床的管理以及选择与发酵床相配套的猪舍类型和环境调控措施非常关键。  相似文献   

8.
为了研究微生物发酵床中粪臭素的分布规律,对不同深度的饲料微生物发酵床垫料样品和不同地理位置的垫料样品中粪臭素含量进行测定,并分析样本间的差异。分别称取2 g猪粪和垫料样品,采用甲醇提取猪粪和垫料样品的粪臭素,利用反相高效液相色谱法对各样品进行粪臭素检测。新鲜猪粪、育肥猪舍垫料、母猪舍垫料和仔猪舍表层垫料的粪臭素含量分别为4.2、0.93、1.6和0.7μg/g。垫料中的粪臭素含量低于猪粪,仔猪舍垫料粪臭素含量最低。采集于育肥猪舍发酵床表层的垫料样本,粪臭素的平均含量为0.93μg/g,内层垫料样本粪臭素平均含量为4.20μg/g,表层垫料粪臭素含量低于内层垫料。微生物发酵床垫料环境中的粪臭素含量低于猪粪,保障养殖环境健康,减少养殖空气污染,实现资源充分利用。  相似文献   

9.
本文旨在探讨南方夏季高温高湿环境下发酵床猪舍采用水帘降温系统的可行性。试验在发酵床猪舍和传统猪舍同时进行,夏季高温高湿环境下,启用水帘降温系统,试验期63d,监测两栋猪舍内3个区域(A区靠近水帘端、B区猪舍中央、C区靠近风机端)的温湿度分布特点、舍内空气微生物数量和氨气浓度。结果表明,采取水帘降温系统后,发酵床舍温度降低1.79℃~4.23℃,两栋猪舍3个区域温度分布特点相同,即靠近水帘端最低,发酵床猪舍中央比水帘端高0.58℃~1.04℃,风机端比水帘端高1.51℃。2.49℃。发酵床舍内细菌总数和大肠杆菌数均显著高于传统舍(P〈0.05)。发酵床舍与传统舍的舍内氨气浓度分别为(6.56±0.32)mg/m3,(8.55±0.82)mg/m3,差异显著(P〈0.05)。南方夏季发酵床猪舍采取水帘降温后,可以有效降低舍内温度和氨气浓度,但细菌总数和大肠杆菌数均显著高于传统舍,尤其是靠近风机端。  相似文献   

10.
为了研究封闭式猪舍内环境参数的变化,改善猪舍内环境,试验在夏季和冬季进行,每个季节选取3栋建筑结构完全相同的产仔哺乳舍,每天测定6:00、11:00、18:00哺乳仔猪舍内主要环境参数变化。结果表明:冬季舍内CO_2、NH_3、H_2S浓度均极显著高于夏季(P0.01),夏季舍内温度极显著高于冬季(P0.01);06:00时舍内CO_2、NH_3、H_2S浓度均极显著高于11:00和18:00(P0.01),11:00和18:00之间差异不显著(P0.05);06:00时舍内温度极显著低于11:00和18:00(P0.01),11:00和18:00之间差异不显著(P0.05);舍1内CO_2浓度极显著高于舍2和舍3(P0.01),舍2显著高于舍3(P0.05);舍2和舍3内NH_3浓度极显著高于舍1(P0.01),舍2与舍3之间差异不显著(P0.05);H_2S浓度各舍之间变化范围不大,未达到显著水平(P0.05);舍3温度极显著高于舍1和舍2(P0.01),舍1与舍2之间差异不显著(P0.05)。说明舍内有害气体的浓度呈现出明显的季节性特征,冬季舍内有害气体浓度最高,不同猪舍内有害气体浓度不同。  相似文献   

11.
选用一种分子筛(XF-1)作为吸附剂,对奶牛圈舍中的CO_2、CH_4、NH_3和H_2S进行吸附试验。用便携式气体检测仪测定风机口排出的CO_2、CH_4、NH_3和H_2S浓度,悬挂吸附剂前后测得的浓度之差即为吸附剂XF-1的吸附浓度。根据实际测得的气温、气压、风速,利用理想气体状态方程推导出公式,将ppm换算为mg/m~3。当悬挂吸附剂后测得浓度与初始浓度无差异性时停止试验。结果表明:1kg吸附剂XF-4春季可吸附CO_2 61.29g、CH_4 8.39g、NH_3 1.27g、H_2S 1.71g;夏季可吸附CO_2 59.14g、CH_4 8.02g、NH_3 1.34g、H_2S1.75g;秋季可吸附CO_2 65.76g、CH_4 8.71g、NH_3 1.64g、H_2S 1.54g,冬季可吸附CO_2 70.91g、CH_4 9.32g、NH_3 2.29g、H_2S 1.57g。吸附剂XF-1对CO_2、CH_4和NH_3的吸附质量与圈舍温度、湿度、初始浓度相关性显著或极显著(P0.05、P0.01),对H_2S的吸附质量与圈舍湿度、气体的初始浓度相关性显著(P0.05)。吸附剂XF-1在春、冬季悬挂31h,夏季、秋季悬挂30h需要更换。  相似文献   

12.
为探讨规模化猪场NH_3排放特征及影响因素,本研究对河南省34个规模猪场进行调查研究,探讨地面类型与清粪方式、通风方式以及屋顶形式与材料等因素对猪舍NH_3浓度和NH_3排放系数的影响。结果表明:在机械通风模式下,猪舍内NH_3浓度因地面类型与清粪方式不同而有所差异,猪舍内NH_3浓度由高到低依次为缝隙地面水泡粪、水泥地面干清粪、生物发酵床舍、缝隙地面刮板清粪,猪舍内NH_3浓度日变化呈现早低、午高、晚降低的趋势;缝隙地板刮板清粪和生物发酵床猪舍内NH_3排放系数显著降低;自然通风舍内NH_3浓度显著高于自然+机械和机械通风2种通风方式(P0.05),分别高出36.71%和58.57%;舍内通风量越大NH_3排放速率越小;不同屋顶形式与材料对猪舍内NH_3浓度的影响均符合NH_3浓度日变化规律,即呈现早低、午高、晚降低的趋势,但不同屋顶形式与材料对猪舍内NH_3浓度和NH_3排放系数无显著影响(P0.05)。  相似文献   

13.
在冬季不同的养殖模式对猪舍环境和生产性能的影响不同,为了筛选出较佳的冬季养猪模式,开展塑料大棚发酵床猪舍与一般发酵床猪舍养猪模式同传统水泥地面养猪模式的试验研究,选用60头三元杂交断奶仔猪分三组进行育肥试验,结果表明:塑料大棚发酵床猪舍模式,一般发酵床模式和传统水泥地面模式的平均日增重分别为710g、686g和610g,塑料大棚发酵床猪舍模式较对照  相似文献   

14.
试验针对夏季北方地区正常生产的哺乳母猪舍、保育猪舍、育肥猪舍的氨气浓度,检验纳米光催化环境改良剂干粉的处理效果。结果表明,处理20 min后猪舍平均氨气浓度快速降至1.11 mg/L~1.61 mg/L之间。哺乳母猪舍处理后72 h内保持较好的使用效果,96 h恢复至处理前氨气的浓度水平。保育猪舍与育肥猪舍再处理后96 h仍然保持较好的处理效果。  相似文献   

15.
为了探讨半开放式猪舍内不同饲养阶段空气颗粒物质量浓度分布及其影响因素。在距离猪舍内地面1.5m处使用颗粒物便携式采样器采集某猪场的半开放式妊娠舍、哺乳舍、保育舍、育肥舍等4栋舍内颗粒物的质量浓度,每天采样4次,每次2 h,连续采样3 d,计算猪舍内颗粒物的质量浓度并探究颗粒物质量浓度与通风、饲喂及季节等因素的关系。发现冬季保育舍内PM2.5、PM10和总悬浮颗粒物(TSP)的含量最高,分别为0.86mg/m~3、0.91 mg/m~3和1.30 mg/m~3,其次为育肥舍,哺乳舍与妊娠舍内的颗粒物的质量浓度最低;人工饲喂可导致哺乳舍内总颗粒物和PM10的质量浓度显著升高2倍以上,且PM10的含量增加是TSP升高的主要原因;在夏季使用机械通风能有效降低保育舍内50%左右总颗粒物和PM10的质量浓度;冬季哺乳舍内PM2.5、PM10、TSP的含量比夏季高1.4倍。由此可见,人工饲喂会使畜舍内颗粒物质量浓度增加;与自然通风相比,机械通风有利于降低畜舍内颗粒物质量浓度;冬季舍内的颗粒物质量浓度高于夏季。根据以上结果,可以制定有效的猪舍空气质量控制方案。  相似文献   

16.
旨在研究育肥羊舍喷洒微生物除臭剂对氨气(NH_3)的去除效果。试验设3组,每天喷洒一次(1次/d)、每天喷洒两次(2次/d)和不喷洒除臭剂的对照舍。采用纳氏比色法对各组羊舍不同时间点(8:30~18:30,每隔2 h)、不同垂直高度(0.2~1.8 m)空间的NH_3浓度进行检测。结果表明,喷洒除臭剂后不同时间点NH_3浓度变化较大,喷洒2 h(10:30)和4 h(12:30)后,1次/d喷洒舍的NH_3浓度低于对照舍,NH_3降低效率分别达10.6%和41.5%。2种不同喷洒次数的羊舍NH_3浓度比较,各时间点1次/d喷洒舍的NH_3显著低于2次/d喷洒舍(P0.05)。从喷洒除臭剂后羊舍NH_3平均浓度看,1次/d的喷洒效果好于2次/d,1次/d的喷洒舍NH_3平均浓度为5.0 mg/m~3,而对照舍和2次/d喷洒舍的浓度分别为6.2和6.3 mg/m~3。  相似文献   

17.
为了比较规模化猪场中不同环境条件下仔猪环境参数和有害气体浓度,探索仔猪和哺乳母猪生长的适宜环境,试验对规模化猪场哺乳仔猪舍和保育舍内早、中、晚温度、湿度和猪舍内有害气体含量进行了测定。结果表明:哺乳仔猪舍温度、湿度均低于国家标准;两类猪舍空气环境中有害气体浓度均在国家标准范围内;哺乳仔猪舍各时间点CO_2、H_2S、NH_3浓度差异不显著(P0.05),且浓度高于保育舍。说明该猪场部分环境参数不符合国家标准,且哺乳仔猪舍与保育舍中的有害气体在不同时间段的浓度不同。  相似文献   

18.
试验使用生物除臭剂对猪舍进行喷洒,检测喷洒前后猪舍内有害气体浓度、舍内有害菌数量的变化以研究除臭剂对猪舍环境的影响,结果显示:猪舍内使用除臭剂后氨气(NH_3)、硫化氢(H_2S)、臭味浓度均较使用前有明显下降;沙门氏菌、大肠杆菌、好氧菌总数的含量显著降低(P<0.05)。表明在猪舍内喷洒生物除臭剂后,能够有效降低有害气体浓度和减少有害菌数量,改善猪舍内空气环境质量。  相似文献   

19.
通过对猪舍屋顶热工指标和通风量进行计算,对舍内空气环境进行测定与分析,研究了新型大棚猪舍保温隔热、通风性能及其应用效果.结果表明该猪舍屋顶冬、夏季总热阻分别为0.824 m2k/w和0.864 m2k/w,冬、夏季通风量分别为355.8 m3/h和12 153.4 m3/h,优于有窗舍,且优于或符合设计要求.舍内空气环境,温度冬、夏季分别为11.3℃和26.5℃;相对湿度冬、夏季分别为72.3%和80.2%;气流速度冬、夏季分别为0.19 m/s和0.72 m/s;NH3浓度冬、夏季分别为0.113 mg/m3和0.656 mg/m3;CO2浓度冬、夏季分别为1 964 mg/m3和1 257 mg/m3,优于有窗舍.大棚舍用于育肥猪舍冬、夏季均有较好的应用效果.  相似文献   

20.
全舍饲大跨度奶牛舍粉尘浓度的变化规律   总被引:1,自引:0,他引:1  
旨在研究全舍饲大跨度奶牛舍两种粉尘(PM_(2.5)和PM_(10))浓度在全天不同时段的变化和月变化规律。采用尘埃记数器对奶牛舍内外的PM_(2.5)和PM_(10)浓度进行连续12个月的监测与分析。结果表明,所有月份舍内PM_(10)浓度均显著高于舍外(P0.05);12个月的舍内PM_(2.5)和PM_(10)浓度变化范围分别为1.8~53.5和84.9~308.5μg/m~3。大多数月份表现为早上或晚上PM_(2.5)和PM_(10)浓度高于中午的规律性,尤其2月份和11月份,2月份早、晚的PM_(2.5)分别是中午的9.5倍和5.5倍,11月份早、晚的PM_(2.5)是中午的2.0和3.5倍;而2月份早和11月份晚的PM_(10)分别是中午的2.1倍和3.4倍。从月变化规律看,舍内两种粉尘浓度自7月或8月份开始呈现增加趋势,于12月份达最高值,为41.8μg/m~3(PM_(2.5))和308.5μg/m~3(PM_(10)),而1~6月份PM_(2.5)、1~7月份PM_(10)平均浓度分别仅9.2μg/m~3和109.0μg/m~3。本研究结果可为奶牛舍的标准化建设及通风设计提供数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号