首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 182 毫秒
1.
叶菜上农药原始沉积行为受作物形态、农药种类及其剂型、施用方式等多种因素的影响,是评估农药残留的重要指标。以吡虫啉和啶虫脒为目标农药,以菠菜和生菜作为靶标作物,通过农药施用后的原始沉积行为,以及兑水量、叶面积指数和农药剂型对农药沉积的影响,初步揭示了农药原始沉积规律。结果表明:施药后0.5~8 h内其沉积量无显著差异,综合考虑,选择施药后2 h时测定其原始沉积量;两种农药在菠菜和生菜中主要沉积在叶片表面,沉积量占比均在87%以上,在根和土壤中的沉积量较少;农药施药剂量相同而兑水量不同,则原始沉积量存在显著差异,随着兑水量的增加,沉积量逐渐减少;菠菜和生菜中农药沉积量与叶面积指数呈负相关;原始沉积量与剂型也有相关性,在施药剂量相同时,吡虫啉在菠菜、生菜中原始沉积量最高均为可湿性粉剂,沉积量分别为0.66和0.77 mg/kg;啶虫脒在菠菜中原始沉积量最高为乳油和可湿性粉剂,沉积量均为0.65 mg/kg,生菜中原始沉积量最高为可湿性粉剂,沉积量为0.37 mg/kg。研究结果认为,农药剂型、兑水量和叶面积指数均会影响叶菜表面农药原始沉积量,该结果可为叶菜中农药合理安全施用和农药残留管控提供...  相似文献   

2.
烯啶虫胺在水稻和稻田环境中的残留及消解动态   总被引:1,自引:0,他引:1  
采用高效液相色谱-紫外检测器(HPLC-UVD)测定了烯啶虫胺在稻田水、土壤、水稻植株和糙米样品中的消解动态及最终残留。田水样品用二氯甲烷萃取;土壤样品用水提取后经二氯甲烷萃取;水稻植株和糙米样品依次用水、丙酮提取,提取液经液液萃取及柱层析净化;HPLC-UVD检测。当烯啶虫胺在田水和土壤中的添加水平为0.1~5 mg/L和0.1~5 mg/kg,在植株和糙米中的添加水平为0.2~5 mg/kg时,其平均添加回收率在77.2% ~100.3%之间,相对标准偏差 (RSD)在1.9% ~12.9%之间。烯啶虫胺在稻田水、土壤、植株和糙米中方法的定量限(LOQ)分别为0.1 mg/L和0.1、0.2、0.2 mg/kg,检出限(LOD)分别为0.04 mg/L和0.04、0.08、0.08 mg/kg。温室模拟消解动态试验结果显示,以推荐使用高剂量的20倍(有效成分1 500 g/hm2) 施药,烯啶虫胺在稻田水、土壤以及水稻植株中的消解动态规律均符合一级动力学方程,其半衰期分别为0.58、3.31及2.70 d,消解速率较快。最终残留试验表明,于大田分蘖期按推荐使用高剂量的1.5倍(有效成分112.5 g/hm2)分别施药3次和4次,间隔期为7 d,距最后一次施药7 d后采样,糙米中烯啶虫胺的残留量均低于LOD值(0.08 mg/kg)及日本规定的最大残留限量(MRL)值(0.5 mg/kg)。  相似文献   

3.
气相色谱法测定醚菌酯在黄瓜 和土壤中的残留量   总被引:1,自引:1,他引:1  
建立了杀菌剂醚菌酯在黄瓜和土壤中的残留分析方法,并研究了其在黄瓜和土壤中的消解动态和最终残留。 样品经丙酮超声提取、二氯甲烷液-液分配和弗罗里硅土净化后,通过GC-NPD 检测。该方法最小检出量为9×10-12 g,在黄瓜和土壤中的最低检测浓度分别为0.005和0.010 mg/kg, 添加回收率为89.4%~104.3%, 变异系数为4.6%~7.0%。残留动态试验结果表明,施药浓度为推荐剂量的两倍时(有效成分300 g/ hm2),醚菌酯在黄瓜和土壤中的半衰期分别为6.4和10.3 d。在有效成分为150和300 g/hm2的剂量条件下,施药3~4次,施药后第 5 d黄瓜中醚菌酯残留量低于欧盟规定的MRL值(0.05 mg/kg)。  相似文献   

4.
烯酰吗啉在黄瓜和土壤中的残留量及消解动态研究   总被引:2,自引:0,他引:2  
我们于2004-2005年在广东省广州市市郊进行了烯酰吗啉50%可湿性粉剂在黄瓜和土壤中残留消解动态和最终残留量的研究.结果表明,在处理剂量为300a.i.g/hm2、施药5次的情况下,药后3d烯酰吗啉在黄瓜中的最终残留量为0.02~0.21mg/kg,在土壤中的残留量为0.23mg/kg.研究表明烯酰吗啉在黄瓜和土壤中消解较快,其残留消解动态曲线符合化学反应一级动力学方程,在黄瓜上的半衰期分别为3.0d(2004)和0.78d(2005),在土壤中的半衰期为14.6d(2005).  相似文献   

5.
采用超高效液相色谱法(UPLC-PDA)测定了双孢蘑菇及其覆土和培养料中啶虫脒的残留量,研究了啶虫脒在工厂化双孢蘑菇栽培中的残留规律。样品以乙腈提取,分散固相萃取净化,超高效液相色谱测定。结果表明:在0.02~3mg/kg3个添加水平下,啶虫脒在双孢蘑菇、覆土和培养料3种基质中的平均添加回收率为81%~97%,相对标准偏差(RSD)为5.7%~9.6%。在不同施药水平下,啶虫脒在覆土和培养料中的消解动态均符合一级动力学指数方程,平均半衰期分别为34和23d。覆土单独施药后啶虫脒会向培养料迁移,培养料内的啶虫脒残留量总体先升高后降低。随覆土或培养料中啶虫脒施药剂量的增加,双孢蘑菇中啶虫脒的残留量随之增加,当啶虫脒在覆土或培养料中的施药量有效成分在10~250mg/kg之间时,双孢蘑菇子实体中啶虫脒的残留量在0.03~2.6mg/kg之间,且第一潮、第二潮和第三潮菇间残留量存在显著差异。同一处理剂量下,覆土单独施药后蘑菇中啶虫脒的残留量显著高于培养料单独施药后蘑菇中的残留量。  相似文献   

6.
为筛选防治莲藕莲缢管蚜的理想药剂,比较研究了吡虫啉、啶虫脒、吡蚜酮的杀虫活性、田间防效、作物安全性和残留。结果表明,啶虫脒对莲缢管蚜3日龄蚜虫的LC50为0.09mg/L,毒力显著高于吡虫啉和吡蚜酮(LC50值分别为0.26mg/L和1.0mg/L)。湖南、湖北、浙江、福建和山东田间试验结果表明,吡虫啉、啶虫脒和吡蚜酮在15g/hm2以上有效使用剂量时,药后7d对莲藕莲缢管蚜的防治效果均在90%以上。10%吡虫啉可湿性粉剂、5%啶虫脒乳油、25%吡蚜酮可湿性粉剂在稀释250倍及以下剂量时拌种或茎叶喷雾对莲藕植株生长均无药害。残留试验结果表明,吡虫啉在莲叶上的半衰期为2.5~5.9d;啶虫脒在莲叶上的半衰期为7.4~9.5d;吡蚜酮在莲叶上的半衰期为0.8~1.3d。吡虫啉、啶虫脒和吡蚜酮防治莲藕莲缢管蚜安全、高效。  相似文献   

7.
利用气相色谱外标法定量分析检测3%啶虫脒乳油在小麦和麦田土壤中的消解动态以及残留量,为制定啶虫脒在小麦上的合理使用提供科学依据。检测结果表明,啶虫脒在小麦植株和土壤中的半衰期分别为5.3~5.8d和7.1~7.8d。啶虫脒在距离最后施药14d采样时麦秸中的残留量为0.030 5~0.182 2mg/kg,土壤中残留量为0.009 1~0.026 1 mg/kg,麦粒中残留量0.002 7~0.072 5mg/kg。  相似文献   

8.
茚虫威在菜用大豆上残留动态及安全使用技术   总被引:1,自引:1,他引:0  
采用气相色谱法(GC/ECD)研究了菜用大豆中茚虫威残留量的检测方法,以及茚虫威在菜用大豆上的残留消解动态,并对其安全使用技术进行了示范试验。结果表明,建立的菜用大豆中茚虫威残留量定量检测方法的平均回收率为86.8% ~90.1%,相对标准偏差为3.85% ~5.24%,最小检出量0.01 ng,最低检测浓度为0.005 mg/kg,该方法简便、准确、能满足实际样品分析。茚虫威在菜用大豆上的原始沉积量因不同施药处理有所差异,施用有效成分96.43 g/hm2的原始沉积量>施用有效成分48.21 g/hm2的原始沉积量,间隔期7 d连续施药两次的原始沉积量>施药1次;残留消解动态符合一级动力学方程,早季的消解系数(︱k︱)=0.174 75±0.000 15,半衰期(T1/2)为4.0 d,消解99%所需要的时间(T0.99)为26.3 ~26.4 d;晚季︱k︱=0.108 35±0.004 95,T1/2为6.1 ~6.7 d,T0.99为40.6 ~45.5 d。在安全使用技术示范试验区,茚虫威按常规施药量(有效成分67.50 g/hm2)及施药方法,2006年晚季施药1次与间隔期7 d连续施药两次,在末次施药后25 d、30 d,最终残留量分别为0.065 ~0.102 mg/kg和0.032 ~0.081 mg/kg;2007年早季间隔期7 d 连续施药两次,在第2次施药后15 d,最终残留量为0.097 ~0.132 mg/kg,产品质量安全水平均符合日本规定的MRL(0.2 mg/kg)要求。  相似文献   

9.
25%环氧虫啶可湿性粉剂与对照25%噻嗪酮可湿性粉剂防治稻飞虱进行药效试验对比,试验结果表明,25%环氧虫啶可湿性粉剂对稻飞虱有很好的防治效果.该药剂在试验剂量范围内对水稻生长安全,对其他有益生物未见影响.建议使用时,用25%环氧虫啶可湿性粉剂有效成分360g/hm2于稻飞虱若虫发生盛期兑水600L对水稻粗水喷雾.  相似文献   

10.
通过探究18%噻虫胺包埋颗粒剂在黄瓜Cucumis sativus L.叶片中的累积量与其对温室白粉虱Trialeurodes vaporariorum Westwood防治效果的相关性及残留消解动态,以期为指导其科学用药,降低环境风险提供理论依据。以1%噻虫胺颗粒剂为对照药剂,通过温室黄瓜栽培试验,调查了18%噻虫胺包埋颗粒剂对温室白粉虱的防治效果。通过建立黄瓜叶片和土壤中噻虫胺残留量的超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测方法,测定了不同施药量和黄瓜不同生长时期条件下18%噻虫胺包埋颗粒剂在黄瓜叶片中的累积量,并研究了其累积量与防治效果的相关性。结果表明:18%噻虫胺包埋颗粒剂对温室白粉虱的防效为49%~95%,是对照药剂1%噻虫胺颗粒剂的1.16~2.32倍,且在推荐施药剂量 (有效成分450 g/hm2)下即能达到理想防效;其在土壤中的残留消解动态符合一级反应动力学方程,消解半衰期为43~63 d,而对照药剂为35 d,表明其在土壤中的消解速率缓慢;噻虫胺在黄瓜叶片中的累积量随施药量的增加而增加,累积量与防效均随施药时间的推移呈现先升高后降低的变化趋势,并在施药后56 d达到最高值,当施药剂量有效成分分别为450、600和750 g/hm2时,黄瓜上部叶片中噻虫胺的最大累积量分别为1.9、2.2和2.8 mg/kg,最高防效均为90%;中部叶片中噻虫胺的最大累积量分别为2.2、2.5和3.0 mg/kg,最高防效分别94%、93%和95%。  相似文献   

11.
采用高效液相色谱(HPLC)法研究了0.2%苄嘧磺隆·丙草胺颗粒剂在稻田环境中的消解动态和最终残留。稻田水、谷壳、稻秆和水稻植株样品用二氯甲烷提取,土壤样品用V(二氯甲烷):V(甲醇)=9:1的混合液提取,糙米样品用V(二氯甲烷):V(甲醇)=7:3的混合液提取后再用二氯甲烷萃取;HPLC法测定。结果表明:当添加水平在0.05~1 mg/kg(或mg/L)时,苄嘧磺隆和丙草胺的平均回收率均在75%~103%之间,相对标准偏差(RSD)为1.6%~13%;苄嘧磺隆和丙草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10-10 g,在稻田水中的最低检测浓度(LOQ)均为0.001 mg/L,在稻田土壤中的LOQ均为0.005 mg/kg,在水稻植株、谷壳和糙米中的LOQ均为0.01 mg/kg。在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm2,其中苄嘧磺隆有效成分为67.5 g/hm2,丙草胺有效成分为472.5 g/hm2)下施药1次的消解动态试验结果表明:在稻田水、土壤和水稻植株中,苄嘧磺隆的消解半衰期分别为5.06~5.83 d、9.76~11.55 d和4.52~4.82 d,丙草胺的消解半衰期分别为5.94~6.45 d、7.70~9.90 d和4.11~4.89 d。分别按低剂量(180 kg/hm2,其中苄嘧磺隆有效成分为45 g/hm2,丙草胺有效成分为315 g/hm2)和高剂量(270 kg/hm2)施药1次,在正常收获期收获的糙米中均未检出苄嘧磺隆和丙草胺残留。  相似文献   

12.
草莓中吡虫啉和氟硅唑残留的膳食暴露风险   总被引:2,自引:1,他引:1  
为明确吡虫啉和氟硅唑在草莓上施用后可能产生的膳食暴露风险,进行了规范的田间残留试验及对不同人群的膳食风险评估。结果表明:保护地栽培条件下,吡虫啉、氟硅唑在草莓上的消解速率符合一级动力学方程,半衰期分别为6.3 d和9.9~11.5 d。10%吡虫啉可湿性粉剂(WP)分别按有效成分37.5和56.25 g/hm2剂量于草莓果实为成熟个体一半大小时开始施药,共施2~3次,每次间隔7 d,于末次施药后3、5、7、10 d时分别采样测定,草莓中吡虫啉的残留量在0.022~0.16 mg/kg之间;400 g/L的氟硅唑乳油(EC)分别按有效成分45和67.5 g/hm2剂量于草莓果实为成熟个体一半大小时开始施药,共施2~3次,每次间隔7 d,于末次施药后3、5、7、10 d时分别采样测定,氟硅唑在草莓中的残留量为0.079~0.30 mg/kg。基于此残留试验数据、各类食物的日平均膳食摄入量及每日允许摄入量(ADI),计算得到中国各类人群中吡虫啉和氟硅唑暴露的风险商(RQ)。结果表明:草莓中吡虫啉和氟硅唑的急性风险商(ARQ)分别为其急性参考剂量(ARfD)的0.18%~1.0%和10%~37.7%,不存在不可接受的急性膳食暴露风险;草莓中吡虫啉和氟硅唑的慢性风险商(CRQ)分别为其ADI值的18.6%~85.3%和68.3%~316.4%,其中氟硅唑对2~4岁幼童的暴露风险超过100%,存在明显风险,但草莓中的氟硅唑对其全膳食暴露风险的贡献率不超过3.2%,并非其主要风险源;两种农药对其他暴露人群均不存在明显膳食风险。中国尚未制定草莓中吡虫啉和氟硅唑的最大残留限量(MRL)值,本研究推荐的吡虫啉和氟硅唑的MRL值对消费者长期慢性暴露风险的保护水平(CPLc)分别为18~109倍和2~13倍,短期急性暴露风险的保护水平(CPLa)分别为121~725倍及6~36倍,对消费者的保护水平均较高。建议:草莓中吡虫啉和氟硅唑的MRL值均可定为0.5 mg/kg,安全间隔期可分别为3 d和5 d;但对于2~4岁幼童,应充分关注氟硅唑对其的慢性膳食暴露风险。  相似文献   

13.
为明确在草莓采果期使用百菌清、腈菌唑和吡唑醚菌酯可能产生的膳食安全风险,进行了残留试验及不同人群的膳食暴露和风险评估。在保护地条件下用75%百菌清WP 400倍液 、 40%腈菌唑SC 4 000倍液(66.7 g/hm2)和25%吡唑醚菌酯EC 1 000 倍液(166.7 g/hm2)处理草莓,果实上的原始沉积量分别为39.2、3.4和3.8 mg/kg;半衰期分别为3.76、3.39和4.06 d。采用风险商方法进行评估,喷施百菌清后7 d内的草莓对2~4岁儿童以及1 d内对18~30岁女性的风险都是不可接受的(风险商为1.2~4.6);而喷施腈菌唑和吡唑醚菌酯后0~7 d内的草莓对2~4岁、18~30岁和60~70岁人群的风险都很低(风险商分别为0.003~0.07和0.02~0.36)。因此,建议草莓中腈菌唑和吡唑醚菌酯的最高残留限量值设定为2 mg/kg,安全间隔期均定为3 d;而百菌清则不宜在草莓采果期使用。  相似文献   

14.
建立了超高效液相色谱-串联质谱测定糙米、谷壳、稻秆、土壤和稻田水中环戊草酮残留的分析方法,结合田间试验研究了环戊草酮在稻田中的残留及消解动态。结果表明:在0.01~1 mg/L范围内,环戊草酮的质量浓度与相应的峰面积间呈良好的线性关系。在0.02、0.05和0.5 mg/kg添加水平下,环戊草酮在糙米、谷壳、稻秆、土壤和稻田水样品中的平均回收率在75%~95%之间,相对标准偏差在1.5%~9.5%之间,检出限 (LOD) 为0.01 ng,在糙米、谷壳、稻秆、土壤和稻田水中的最低检出浓度 (LOQ) 为0.02 mg/kg。浙江、山东和湖南3地2年的田间试验表明:环戊草酮在稻秆和土壤中的半衰期分别为4.2~9.0 d和7.0~11.6 d,其消解规律符合一级反应动力学方程。分别以有效成分含量375(低剂量) 和562.5 g/hm2(高剂量)2个剂量施用90 g/L环戊草酮悬浮剂1次,于收获成熟期采样检测发现,环戊草酮在糙米中的最终残留量均小于0.02 mg/kg,该研究结果可为制定环戊草酮在糙米中的最大残留限量值 (MRL) 提供数据支撑。  相似文献   

15.
48%毒死蜱乳油在杭白菊和土壤中的消解动态   总被引:1,自引:0,他引:1  
通过田间植株直接施药-定期采样-样品提取净化-气相色谱分析的方法,研究了48%毒死蜱乳油中毒死蜱在杭白菊胎菊和土壤中的消解动态,并在室内探讨了不同温度对干胎菊中毒死蜱消解的影响。结果表明:在有效成分0.48和0.72 kg/hm22个施药剂量下,毒死蜱在杭白菊土壤和鲜胎菊中的消解半衰期分别为9.24~10.82 d和2.94~4.22 d;不同温度下,干胎菊中毒死蜱的半衰期在12.64~27.39 d之间,存在显著性差异(P0.05),其消解速率随温度升高而加快;在杭白菊上分别以有效成分0.48 kg/hm2(推荐高剂量)和0.72 kg/hm2(1.5倍推荐高剂量)的剂量喷雾施药2次,距末次施药后21 d时,毒死蜱在干胎菊中的残留量分别为0.58和0.89 mg/kg,均低于我国制定的毒死蜱在茶叶中的最大残留限量(MRL)标准(1 mg/kg)。  相似文献   

16.
五氟磺草胺在稻田中的消解动态及残留特性   总被引:3,自引:3,他引:0  
建立了超高效液相色谱-质谱联用检测五氟磺草胺在水稻植株、稻田土壤、田水和糙米中残留的分析方法,结合田间试验研究了五氟磺草胺在稻田环境中的消解及残留特性,并对稻米中五氟磺草胺残留的膳食暴露进行了初步评估。结果表明:在0.005~0.5 mg/L范围内,五氟磺草胺的质量浓度与对应的峰面积间呈良好线性关系,检出限(LOD)为0.001~0.002 mg/kg,定量限(LOQ)为0.003~0.005 mg/kg。在0.005~0.5 mg/kg添加水平下,五氟磺草胺在水稻植株、稻田土壤、田水和糙米中的平均回收率在89%~106%之间,相对标准偏差在2.8%~8.5%之间。浙江、福建和黑龙江2年3地的田间试验表明:0.025%五氟磺草胺颗粒剂在水稻植株、稻田土壤和田水中的消解半衰期分别为1.5~3.3,3.0~4.7和1.6-3.0 d,说明该药剂在稻田环境中消解速率较快。以五氟磺草胺有效成分含量37.5和56.3 g/hm2分别施药1次,于水稻成熟期采样检测,发现其在糙米中的残留量低于0.005 mg/kg,表明其膳食摄入风险很低,该研究结果可为五氟磺草胺风险评估提供一定参考。  相似文献   

17.
通过一年两季(春季和冬季)的田间试验,采用C18固相萃取-高效液相色谱分析方法,研究了苦参碱在小白菜及土壤中的残留和消解动态。方法验证试验表明:在0.02~0.5mg/kg添加水平下,苦参碱在小白菜和土壤中的平均回收率为71%~87%,相对标准偏差为5.7%~14%,在小白菜与土壤中的定量限(LOQ)均为0.02mg/kg。消解动态试验结果表明:苦参碱在小白菜及土壤中的消解过程均符合一级动力学方程,消解半衰期分别为1.0d(春季,小白菜)、1.5d(冬季,小白菜)、1.4d(春季,土壤)和1.6d(冬季,土壤)。最终残留结果显示:距最后一次施药7d后,高浓度(有效成分6.71g/hm2)和低浓度(有效成分4.47g/hm2)苦参碱在春季和冬季小白菜中的最终残留量在0.061~0.074mg/kg之间;在土壤中的最终残留量在未检出~0.075mg/kg之间。可见,苦参碱在小白菜及土壤中易消解,为保障小白菜食用安全,建议可将0.1mg/kg作为其最大残留限量,安全间隔期不小于3d。  相似文献   

18.
多菌灵在杭白菊及其土壤中的残留消解动态   总被引:2,自引:1,他引:1  
通过田间植株直接施药-定期采样提取-高效液相色谱分析的方法,研究了多菌灵在杭白菊胎菊、菊花及土壤中的残留消解动态,测定了多菌灵在杭白菊胎菊和菊花中的最终残留量,并在室内探讨了不同温度对干胎菊和干菊花中多菌灵消解的影响。结果表明:在0.675和1.00 kg/hm2 2个施药剂量下,多菌灵在杭白菊土壤、胎菊和菊花中的消解半衰期分别为7.98~8.34 d、3.90~4.05 d和3.31~3.45 d;不同温度下,干胎菊和干菊花中多菌灵的半衰期存在显著性差异(P2的剂量喷雾施用2次,第2次施药后21 d时多菌灵在干胎菊和干菊花中的残留量分别为0.182~0.294 mg/kg和0.371~0.381 mg/kg,远低于我国制定的多菌灵在怀菊中的最大残留限量标准(5 mg/kg)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号