首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
基础科学   1篇
综合类   6篇
植物保护   5篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2009年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
为筛选出最佳清洗方法,提高芹菜的食用安全性,采用正交试验设计,研究了自来水、食盐、食醋、小苏打和果蔬清洗剂对田间芹菜样品 (以下简称田间样品) 及实验室模拟芹菜样品 (以下简称实验室模拟样品) 中吡虫啉残留的去除效果。结果表明:各种清洗方式对田间样品及实验室模拟样品中吡虫啉残留均有一定的去除作用。其中,田间样品去除率分别为自来水18%~46%、食盐溶液42%~75%、食醋溶液39%~68%、小苏打溶液14%~42%和果蔬清洗剂溶液29%~75%,去除能力由高到低依次为食盐溶液 = 果蔬清洗剂溶液 > 食醋溶液 > 自来水 > 小苏打溶液。实验室模拟样品去除率分别为自来水35%~63%、食盐溶液13%~31%、食醋溶液23%~42%、小苏打溶液13%~40%和果蔬清洗剂溶液25%~44%,去除能力由高到低依次为自来水 > 果蔬清洗剂溶液 > 食醋溶液 > 小苏打溶液 > 食盐溶液。以去除率为评价依据,清洗液的清洗时间、温度、质量分数和浸泡次数对去除率均有不同程度的影响。研究结果对于去除芹菜等蔬菜中吡虫啉残留,降低膳食摄入风险,具有一定指导意义。  相似文献   
2.
为合理评估除草剂异唑草酮的环境风险,在实验室模拟条件下,研究了异唑草酮在土壤 (红壤土)表面光解以及在不同质地土壤 (潮土、水稻土和红壤土) 中的降解和淋溶特性。结果表明:异唑草酮在土壤表面的光解遵循一级反应动力学方程ct = 4.23e–0.008t (r = 0.937),半衰期为82.5 h;其在潮土、水稻土和红壤土中的降解均符合一级动力学方程,好氧条件下,异唑草酮在3种土壤中的降解半衰期分别为10.5、43.3和139 h,厌氧条件下的降解半衰期分别为19.4、18.4和158 h;其在潮土、水稻土和红壤土中的淋溶系数 (Rf) 分别为0.417 0、0.083 3和0.083 3。研究表明:异唑草酮在土壤表面光解速率较慢,而在土壤中好氧及厌氧条件下降解速率均较快,残留期短;其在土壤中淋溶性较弱,不易对周围环境及地下水造成污染风险。  相似文献   
3.
建立了超高效液相色谱-串联质谱测定糙米、谷壳、稻秆、土壤和稻田水中环戊草酮残留的分析方法,结合田间试验研究了环戊草酮在稻田中的残留及消解动态。结果表明:在0.01~1 mg/L范围内,环戊草酮的质量浓度与相应的峰面积间呈良好的线性关系。在0.02、0.05和0.5 mg/kg添加水平下,环戊草酮在糙米、谷壳、稻秆、土壤和稻田水样品中的平均回收率在75%~95%之间,相对标准偏差在1.5%~9.5%之间,检出限 (LOD) 为0.01 ng,在糙米、谷壳、稻秆、土壤和稻田水中的最低检出浓度 (LOQ) 为0.02 mg/kg。浙江、山东和湖南3地2年的田间试验表明:环戊草酮在稻秆和土壤中的半衰期分别为4.2~9.0 d和7.0~11.6 d,其消解规律符合一级反应动力学方程。分别以有效成分含量375(低剂量) 和562.5 g/hm2(高剂量)2个剂量施用90 g/L环戊草酮悬浮剂1次,于收获成熟期采样检测发现,环戊草酮在糙米中的最终残留量均小于0.02 mg/kg,该研究结果可为制定环戊草酮在糙米中的最大残留限量值 (MRL) 提供数据支撑。  相似文献   
4.
建立固相萃取/超高效液相色谱-串联质谱(SPE/UPLC-MS/MS)检测白术鲜样及干样中井冈霉素和丙环唑残留的分析方法。样品经甲醇/水(9∶1,V/V)提取,Oasis HLB和 Cleanert AQ C18固相萃取小柱净化,HSS T3 超高效液相色谱柱进行分离,电喷雾正离子多重反应监测(MRM)模式进行测定。结果表明:浓度在0.000 1~0.1 mg·L-1 范围内,井冈霉素和丙环唑在溶剂及基质中的峰面积与其对应的质量浓度间线性关系良好,R2≥0.999 6。在添加 0.01、0.5、5.0 mg·kg-1 标准品浓度下,井冈霉素在白术中的添加回收率为72.4%~85.8%,相对标准偏差(RSD)为0.89%~6.20%;在添加0.005、0.1、1.0 mg·kg-1标准品浓度下,丙环唑在白术中的添加回收率为88.1%~98.9%,RSD为1.4%~4.8%。井冈霉素和丙环唑在白术中的定量限(LOQ)分别为0.01 mg·kg-1和0.005 mg·kg-1。通过对实际样品的检测,表明该方法操作简单,重复性好,准确度、精密度及检出限均可满足农药残留分析要求。  相似文献   
5.
利用农业废弃物处理重金属离子废水是一种新型有效的方法,它具有低成本、高效率、可再生等优势,具有广阔的发展空间.近年来,各种农业废弃物对废水中重金属离子的去除效果得到了广泛的研究,但始终未对其进行系统的总结.为此,结合当前国内外研究进展,概述了农业废弃物处理重金属离子废水的吸附机理和吸附模型,并且详细总结了各种农业废弃物对铅、镉、镍、铜、锌、锰、汞等重金属离子的吸附处理效果,以期为进一步提升农业废弃物处理重金属离子废水的性能提供一定的理论指导.  相似文献   
6.
实验室条件下,采用高效液相色谱研究了异■唑草酮水解和在水中的光解动态特性,结果表明,异■唑草酮在碱性缓冲液中水解最快,在酸性缓冲液中水解最慢,其水解速率随着温度的升高而加快,温度效应系数和活化能均是在碱性缓冲液中最低。在pH值分别为4、7、9的缓冲液中,25℃时异■唑草酮的水解半衰期分别为150.70、82.50、3.90 h,50℃时的水解半衰期分别为19.40、4.10、0.75 h,根据我国农药登记试验水解等级划分标准,异■唑草酮属于易水解农药。在25℃,光照度为3 350 lx以及紫外强度为58.8μW/cm~2条件下,异■唑草酮在水中的光解半衰期为6.4 h,根据我国农药登记试验的光解特性等级划分标准,异■唑草酮属于中等光解类农药。  相似文献   
7.
为评价异恶唑草酮的环境安全性,采用室内模拟试验方法,研究了异恶唑草酮在不同环境介质(空气、水和土壤表面)的挥发特性,在不同质地土壤(潮土、水稻土、黑土和红壤土)的吸附特性,和2种水-沉积物系统中的降解特性。结果表明:异恶唑草酮在潮土、水稻土、黑土和红壤土中的吸附均符合弗罗因德利希(Freundlich)方程,吸附常数值分别为0.640 6、1.376 2、0.816 9和1.289 5,在土壤中属于难吸附农药。异恶唑草酮在湖泊(杭州西湖)水-沉积物系统和河流(杭州运河)水-沉积物系统中的好氧降解和厌氧降解均符合一级动力学方程,好氧降解半衰期分别为73.7 h和75.3 h,厌氧降解半衰期分别为42.3 h和43.0 h,在水-沉积物系统中属于易降解农药。在20~25 ℃、气体流速为500 mL·min-1的条件下,异恶唑草酮在空气、水和土壤表面的挥发率均小于1%,属于难挥发性农药。试验结果表明,异恶唑草酮在空气、水和土壤表面难挥发,在土壤中难吸附,在水-沉积物系统中降解快,环境风险较小。  相似文献   
8.
建立了QuEChERS-液相色谱-质谱联用 (LC-MS/MS) 同时测定铁皮石斛茎和叶中氯虫苯甲酰胺和吡唑醚菌酯残留量的分析方法,并采用该方法研究了这2种农药在铁皮石斛中的消解动态及最终残留量。样品经乙腈提取,用N-丙基乙二胺 (PSA)、C18和石墨化碳 (PC) 净化。正离子电离,多反应监测模式,LC-MS/MS测定,外标法定量。结果表明:在0.10~60 mg/kg添加水平下,氯虫苯甲酰胺在铁皮石斛茎和叶中的平均回收率为74%~90%,相对标准偏差 (RSD) 为3.2%~4.1%;吡唑醚菌酯在铁皮石斛茎和叶中的平均回收率为75%~104%, RSD为1.7%~4.4%。样品中氯虫苯甲酰胺和吡唑醚菌酯的定量限 (LOQ) 均为 0.1 mg/kg。氯虫苯甲酰胺和吡唑醚菌酯在铁皮石斛中消解较慢,120 d时,氯虫苯甲酰胺在铁皮石斛茎和叶中的降解率分别为40%和72%,吡唑醚菌酯在铁皮石斛茎和叶中的降解率分别为80%和94%。吡唑醚菌酯在铁皮石斛叶中的消解半衰期为38.1 d。5%氯虫苯甲酰胺悬浮剂按有效成分37.5 g/hm2施药1~2次,施药间隔为7 d,当采收间隔期为30 d时,氯虫苯甲酰胺在茎和叶中的残留量均小于3 mg/kg。25%吡唑醚菌酯水分散粒剂按有效成分187.5 g/hm2施药2~3次,施药间隔为7 d,当采收间隔期为90 d时,吡唑醚菌酯在茎和叶中的残留量均小于8 mg/kg。  相似文献   
9.
为评价环酰菌胺在土壤中的生态风险,采用超高效液相色谱-串联质谱(UPLC-MS/MS)方法测定了土壤和水中环酰菌胺的残留量,研究了该农药在红壤和水稻土中的吸附及降解特性,并对其淋溶特性进行了分析,评估了该农药对地下水的污染风险。结果表明:环酰菌胺在红壤和水稻土中的吸附符合Freundlich吸附等温线方程,KOC值分别为373.69和726.86 mL/g,水稻土对环酰菌胺的吸附能力强于红壤。好氧条件下,环酰菌胺在红壤和水稻土中的降解半衰期分别为0.63和5.06 d,积水厌氧条件下的降解半衰期分别为6.80和9.24 d,表明环酰菌胺在好氧条件下降解较快。环酰菌胺在红壤和水稻土中的地下水污染指数(groundwater ubiquity score)分别为1.19和1.10,表明其对地下水的污染风险较低。结果可为环酰菌胺的生态风险评估提供参考。  相似文献   
10.
QuEChERS-LC-MS/MS测定芹菜中吡虫啉和唑螨酯   总被引:1,自引:0,他引:1  
为建立芹菜根、茎、叶中吡虫啉、唑螨酯残留的QuEChERS-LC-MS/MS分析方法,采用QuEChERS方法对样品进行提取和净化,通过液相色谱-串联三重四极杆质谱联用仪(LC-MS/MS)测定样品中吡虫啉、唑螨酯残留。结果表明:添加质量分数为0.05~1.00 mg·kg-1时,吡虫啉在芹菜根、茎、叶中的平均添加回收率为77.15%~103.48%,RSDs为1.40%~9.97%;唑螨酯在芹菜根、茎、叶中的平均添加回收率为77.35%~100.42%,RSDs为2.01%~6.95%。吡虫啉、唑螨酯的检出限(LODs)分别是0.120、0.015 μg·kg-1;吡虫啉在芹菜根、茎、叶的定量限(LOQs)分别为1.65、0.87、1.08 μg·kg-1;唑螨酯在芹菜根、茎、叶的LOQs分别是1.24、0.75、0.78 μg·kg-1。该方法操作简单,回收率、精密度均符合农药残留分析的要求,适合实验室大量样品的检测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号