首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
健康仔猪单剂量内服左旋氧氟沙星的药动学研究   总被引:1,自引:0,他引:1  
以20mg/kg剂量内服进行左旋氧氟沙星的辩证药动学研究。高效液相色谱法测定血浆药物浓度、3P97药代动力学程序处理药时数据。健康组药时数据符合一级吸收一室模型,其主要药动学参数为:吸收半衰期t1/2ka(0.42±0.08)h,消除半衰期t1/2ke(7.62±0.38)h,达峰时间tmax(1.85±0.25)h,峰浓度Cmax(6.99±0.92)mg/L,药时曲线下面积AUC(90.7±10.07)mg/L·h,生物相表观分布容积VF(s)(2.45±0.28)L/kg,平均滞留时间MRT(11.92±0.94)h。  相似文献   

2.
沙拉沙星在猪体内的药动学研究   总被引:4,自引:0,他引:4  
7头健康杂种猪 ,按照随机拉丁方设计 ,进行静注、肌注及内服沙拉沙星 (5mg/kg)的药动学研究。血浆样品经甲醇沉淀血浆蛋白 ,高速离心 ,用反相高效液相色谱法测定猪血浆中沙拉沙星的浓度 ,MCPKP计算机程序处理血浆药物浓度 时间数据。健康猪静注给药的药时数据适合二室开放模型 ,主要药物动力学参数为t1/ 2α0 88±0 2 8h ;t1/ 2 β3 0 6± 0 5 0h ;V11 36± 0 2 4L/kg ;Vd(area) 2 5 0± 0 42L/kg ;ClB0 5 7± 0 0 7L·kg-1·h-1;AUC8 90±1 0 3mg·L-1·h。健康猪肌注给药的药时数据适合一级吸收一室模型 ,主要药物动力学参数为 :t1/ 2ka0 2 5± 0 18h ;t1/ 2ke3 5 3± 1 0 1h ;tmax0 94± 0 49h ;Cmax1 30± 0 37μg/ml;AUC 7 6 6± 1 38mg·L-1·h ;F86 48%± 15 15 %。健康猪内服给药的药时数据适合一级吸收一室模型 ,主要药物动力学参数为 :t1/ 2ka0 5 1± 0 2 9h ;t1/ 2ke6 72± 2 78h ;tmax2 45± 0 89h ;Cmax0 36± 0 2 1μg/ml;AUC  4 5 4± 1 0 6mg·L-1·h ;F5 1 99%± 14 6 7%。沙拉沙星在健康猪体内的主要药动学特征为 :吸收迅速 ,达峰时间短 ,表观分布容积大。肌注给药吸收完全 ;内服给药吸收不完全 ,消除缓慢。  相似文献   

3.
恩诺沙星混悬液在猪体内的药动学及生物利用度   总被引:6,自引:0,他引:6  
本文比较了恩诺沙星混悬液和恩诺沙星溶液在猪体内的药动学特征和生物利用度。选用 7头健康猪按拉丁方设计进行静注、肌注恩诺沙星溶液和肌注恩诺沙星混悬液在猪体内的药物动力学研究。 3种给药方法的剂量均为 10mg/kg。猪静注给药的药时数据符合二室开放模型 ,主要药动学参数为 :t1/ 2α0 6 4± 0 15h ,t1/ 2 β9 0 6± 2 47h ,Vd(area) 4 40± 0 88L/kg ,ClB0 35± 0 0 6L·kg-1·h-1,AUC2 9 85± 4 11L·kg-1·h。猪肌注恩诺沙星溶液和恩诺沙星混悬液的药时数据符合一级吸收一室模型 ,其主要药动学参数分别为t1/ 2ka0 2 4± 0 10h和 1 2 5± 1 0 9h(P <0 0 5 ) ;t1/ 2ke8 90± 2 0 2h和 18 95± 4 5 5h(P <0 0 1) ;Tmax1 2 5± 0 41h和 5 14± 2 95h(P <0 0 1) ;Cmax1 5 4± 0 2 5 μg/ml和 0 87± 0 2 1μg/ml;AUC2 1 49± 4 94mg·L-1·h和 2 8 97± 10 80mg·L-1·h ;F72 0 %±17 4%和 97 7%± 35 0 %。比较肌注恩诺沙星混悬液和恩诺沙星溶液的主要药动学参数 ,二者有显著差异 ,前者的t1/ 2ka、Tmax、t1/ 2ke和Cmax分别为后者的 5 2、4 1、2 1和 0 6倍。这些差异说明恩诺沙星混悬液肌注后吸收缓慢 ,消除半衰期延长 ,临床应用 48h给药 1次仍能维持对常见病原菌的有效血药  相似文献   

4.
阿莫西林钠在猪体内的生物利用度及药动学研究   总被引:4,自引:0,他引:4  
1 4头健康杂种猪 ,随机平均分为两组 ,按随机交叉试验设计 ,进行静注及内服阿莫西林钠 (1 0mg/kg)的药动学研究 ,以及肌注阿莫西林钠及阿莫西林钠长效制剂 (1 0mg/kg)的药动学比较。高效液相色谱法测定猪血浆中阿莫西林的浓度 ,MCPKP计算机程序处理血浆药物浓度 时间数据。健康猪静注给药的药时数据适合二室开放模型 ,主要药物动力学参数为 :t1 /2α0 31± 0 1 6h;t1 /2 β2 2 9± 0 94h ;V1 0 2 2± 0 1 2L/kg ;Vd(area) 1 0 6± 0 45L/kg ;ClB0 33±0 0 7L·kg- 1 ·h- 1 ;AUC31 67± 7 0 9mg·L- 1 ·h。健康猪内服给药的药时数据适合一级吸收二室模型 ,主要药物动力学参数为 :t1 /2ka0 74± 0 36h ;t1 /2 β5 96± 3 41h ;tmax1 52± 0 43h ;Cmax5 33± 2 0 7μg/mL ;AUC2 3 89± 9 40mg·L- 1 ·h ;F79 64 %± 38 47%。健康猪肌注阿莫西林钠和阿莫西林钠长效制剂的药时数据均适合一级吸收二室模型 ,主要药物动力学参数为 :t1 /2ka0 1 1± 0 0 5h和 0 0 9± 0 0 5h ;t1 /2 β3 2 8± 1 89h和 7 32± 3 55h ;tmax0 33± 0 1 4h和 0 36±0 1 6h ;Cmax1 6 51± 4 41 μg/mL和 1 8 98± 2 70 μg/mL ;AUC30 61± 8 2 7mg·L- 1 ·h和 49 44± 1 1 31mg·L- 1 ·h ;F96 65  相似文献   

5.
麻保沙星(marbofloxacin)在鸡体内的生物利用度及药物动力学   总被引:7,自引:0,他引:7  
选用 36只 5 1~ 6 0日龄健康岭南黄鸡 ,随机均分为 3组 ,对静注、肌注及内服麻保沙星 (2 .5 mg/ kg)的生物利用度和药物动力学进行了研究。用三氯甲烷提取血浆中的药物 ,反相高效液相色谱法测定血浆中麻保沙星的浓度 ,MCPKP计算机程序处理所得到的血药浓度 -时间数据。静注给药的药时数据适合三室开放模型 ,主要药动学参数分别为 :t1 /2π(0 .19± 0 .0 3) h;t1 /2α(2 .0 7± 0 .2 7) h;t1 /2β(6 .5 2± 0 .6 9) h;V1 (0 .48± 0 .0 3) L / kg;Vd(area) (2 .0 6± 0 .39)L/ kg;Vd(ss) (1.0 5± 0 .0 6 ) L/ kg;Cl B(0 .19± 0 .0 2 ) L/ (kg· h) ;AUC(13.95± 1.0 7) mg· kg- 1 · h。肌注给药的药时数据适合一级吸收二室开放模型 ,主要药动学参数分别为 :t1 /2 Ka(0 .5 4± 0 .0 5 ) h;t1 /2α(2 .33± 0 .2 0 ) h;t1 /2β(6 .2 7± 0 .46 )h;tmax(1.5 7± 0 .0 9) h;Cmax(1.88± 0 .0 5 ) m g/ L ;AUC(13.18± 0 .6 7) mg· kg- 1 · h;F(94.45± 4.80 ) %。内服给药的药时数据适合一级吸收二室开放模型 ,主要药动学参数分别为 :t1 /2 Ka(0 .42± 0 .0 6 ) h;t1 /2α(2 .31± 0 .2 5 ) h;t1 /2β(6 .48±0 .6 6 ) h;tmax(1.35± 0 .12 ) h;Cmax(1.83± 0 .18) mg/ L;AUC(13.5 5± 0 .6 7) mg· k  相似文献   

6.
6头成年健康黄牛按10 mg/kg剂量单次快速静注吡喹酮,另6头成年健康黄牛根据交叉试验设计法按10 mg/kg剂量单次肌注、30 mg/kg剂量内服吡喹酮进行药动学与生物利用度试验.利用高效液相色谱法测定血浆中吡喹酮原药的质量浓度,其检测限为25μg/L.房室模型分析表明,静注给药后的药时数据符合无吸收二室开放模型,其分布半衰期(t1/2a)、消除半衰期(t1/2β)、表观分布容积(Vd)、总体清除率(ClB)、药时曲线下面积(AUC)分别为(0.25±0.03)h、(1.28±0.20)h、(2.11±0.38)L/kg、(1.14±0.10)L/(kg·h)和(8.79±0.74)mg/(L·h).肌注的药时数据符合有吸收一室开放模型,主要药动学参数吸收半衰期(t 1/2ka)、消除半衰期(t1/2ke)、药时曲线下面积(AUC)、达峰时间(tmax)、峰浓度(Gmax)和生物利用度(F)分别为(0.40±0.17)h、(4.65±0.91) h、(6.85±1.02)mg/(L·h)、(1.33±0.52)h、(0.83±0.08)mg/L和77.93%.内服给药后符合有吸收一室开放模型,吸收不规则,其药动学参数t 1/2ka、t1/2ke、AUC、tmax、Cmax和F分别为(1.08±0.13)h、(6.81±1.26)h、(8.51±1.78)mg/(L·  相似文献   

7.
伊维菌素微球在家兔体内的药动学   总被引:14,自引:1,他引:13  
皮下注射伊维菌素 (IVM )微球悬液 (5 0mg/kg及 10 0mg/kg)和害获灭 (1%伊维菌素 ,0 5mg/kg) ,RP HPLC UV法定量 ,研究了IVM在家兔体内的药物动力学。害获灭皮下注射给药 ,药 时数据符合一级吸收一室开放模型 ,主要动力学参数为 :t1/2ka=7 2 4± 2 96h ;t1/2ke=36 38± 8 6 6h ;tmax=2 1 4 6± 4 82h ;Cmax=2 2 53± 2 32ng/ml;AUC =174 9± 318ng/1.h ,其动力学参数表现比较明显的个体差异 ,且与其它动物有明显差别。微球皮下注射一周后 ,血药浓度呈较稳定状态 ,到第 4 2天 (高剂量组 )和第 32天 (低剂量组 ) ,血浆中测不出H2 B1a(低于 2 5ng/ml)。以房室模型拟合 ,微球高低剂量组均符合有吸收二室开放模型 ,主要药动学参数均表现显著的个体差异。  相似文献   

8.
儿茶素在家兔体内的药物动力学及生物利用度研究   总被引:1,自引:0,他引:1  
对家兔单剂量静注和灌服儿茶素 (Catechin) 2 5mg/kg体重各 5只。用高效液相色谱法测定其血药浓度。房室模型分析表明静注给药后的药时数据符合无吸收二室开放模型 ,主要动力学参数为 :t1 / 2α=( 0 .1 5± 0 .0 1 )h ,t1 / 2 β=( 0 .5 8± 0 .0 2 )h ,Vc=( 1 .41± 0 .0 8)L ,Vβ=( 2 .97±0 .1 1 )L ,ClB=( 3.5 3± 0 .1 0 )L/h ,AUC =( 1 6.95± 1 .5 2 )mg/(L·h)。灌服儿茶素的药时数据符合一级吸收一室开放模型 ,主要药物动力学参数为 :t1 / 2Ka=( 0 .39± 0 .0 6)h ,t1 / 2Ke=( 0 .79±0 .1 1 )h ,tmax=( 0 .78± 0 .1 1 )h ,Cmax=( 3.35± 0 .1 6)mg/L ,AUC =( 7.45± 0 .94)mg/(L·h) ,F =( 4 4.1 8± 3.5 9) %。儿茶素在健康家兔体内的药动学特征是 :吸收迅速 ,达峰时间短 ,消除快 ,半衰期短 ,表观分布容积较大 ,口服摄入吸收不完全  相似文献   

9.
选健康家兔 ,单剂量静注和灌服儿茶素 (Catechin) 2 5 mg/ kg,用高效液相色谱法测定其血药浓度 ,3P87计算机程序处理所得血药浓度—时间数据。结果健康家兔静注给药的药时数据符合无吸收二室开放模型 ,主要动力学参数为 :t1 /2α(0 .15± 0 .0 1) h,t1 /2β(0 .5 8± 0 .0 2 ) h,Vc (1.4 1± 0 .0 8) l,Vβ(2 .97± 0 .11) l,Cl B(3.5 3±0 .10 ) l/ h,AU C(16 .95± 1.5 2 ) mg/ (l· h) ,K1 0 (2 .5 2± 0 .2 0 ) h- 1 ,K2 1 (2 .2 5± 0 .15 ) h- 1 ,K1 2 (1.17± 0 .15 )h- 1 。健康家兔灌服儿茶素的药时数据符合一级吸收一室开放模型 ,主要药物动力学参数为 :t1 /2 ka(0 .39± 0 .0 6 )h,t1 /2 ke(0 .79± 0 .11) h,tmax(0 .78± 0 .11) h,Cmax(3.35± 0 .16 ) mg/ l,AU C (7.4 5± 0 .94 ) m g/ (l· h) ,F (6 4±7.0 0 ) %。儿茶素在健康家兔体内的药动学特征是 :吸收迅速 ,达峰时间短 ,消除快 ,半衰期短 ,表观分布容积较大 ,口服摄入吸收不完全  相似文献   

10.
16只健康 AA肉仔鸡 ,随机分成 2组 ,每组 8只 ,按 10 mg/ kg剂量分别进行静注和内服单剂量环丙沙星药动学试验。血浆中药物浓度用高效液相色谱法测定 ,血药浓度 -时间数据用 MCPKP药动学计算机程序处理。结果表明 ,静注给药后的药时数据符合无吸收二室开放模型 ,主要动力学参数分别为 :t1 /2α为 (0 .2 34± 0 .0 49) h,t1 /2β为 (10 .118±0 .2 71) h,VB为 (1.374± 0 .12 4) L/ kg,CLB为 (0 .0 94± 0 .0 0 9) L· kg- 1 · h- 1 ,AUC为 (10 7.0 6 8± 10 .6 40 ) mg· L- 1· h。内服给药后的药时数据符合一级吸收一室开放模型 ,主要动力学参数分别为 :t1 /2 kα为 (0 .114± 0 .0 0 8) h,t1 /2 k为(7.784± 0 .5 14) h,Tp 为 (0 .70 2± 0 .0 31) h,Cmax为 (5 .736± 0 .5 15 ) m g/ L,AUC为 (6 8.6 2 2± 8.147) mg· L- 1· h,F为 (6 4.0 92± 7.6 10 ) %。肉仔鸡静注环丙沙星在其体内消除较慢 ,分布广泛 ;内服给药吸收迅速 ,消除较静注给药快。  相似文献   

11.
试验将20只2月龄健康番鸭,随机分为2组,每组10只,雌雄各半,分别进行静脉注射和口服硫酸头孢喹肟给药的药动学研究。静脉注射和口服的给药剂量分别为10和20 mg/kg。以反相HPLC测定血浆中硫酸头孢喹肟的浓度,血药浓度—时间数据用3P97药动学程序软件处理。鸭单剂量静脉注射给药后,血药浓度—时间数据符合无吸收二室开放模型,其主要动力学参数分别为:V(c),(1.146±0.02) L/kg;t1/2α,(0.290±0.02)h;t1/2β,(1.691±0.15)h;AUC (6.635±0.18)(mg·h)/L;CL(s),(1.508±0.04)L/(kg·h)。鸭口服硫酸头孢喹肟的血药浓度—时间数据符合一级吸收一室开放模型,主要动力学参数分别为:t1/2(ka),(0.45±0.05)h;t1/2(ke),(0.96±0.29)h;T(peak),(0.91±0.09)h;C(max),(3.14±0.64)mg/L;AUC,(8.29±1.26)(mg·h)/L;F,(62.55±0.10)%。硫酸头孢喹肟在体内的药动学特征表现为吸收迅速、分布广泛、消除迅速。但口服给药在鸭体内生物利用度低,可能由于硫酸头孢喹肟的脂溶性低,其在消化道吸收率低所致。但8 h内能保持有效血药浓度范围((0.14±0.03)~(3.14±0.64)μg/mL),可抑制鸭疫里默氏杆菌及其他细菌感染。  相似文献   

12.
The present experiment was designed to study the pharmacokinetics of levofloxacin in six healthy cross bred female cow calves (4 to 6 months age) weighing between 40 to 80 kg. Plasma from blood was separated by centrifugation at 10,000 rpm. Quantitative estimation of levofloxacin was done by UV-VIS spectrophotometer at 286 nm. The mean maximum plasma concentration (Cpmax ) of levofloxacin in febrile calves (5.28?±?0.32 µg/ml) did not differ significantly as compared with healthy calves (4.50?±?0.22 µg/ml) after single dose (20 mg/kg) oral administration. The mean therapeutic plasma concentration ( Cpther ) of levofloxacin was maintained for longer period in febrile calves (10 h) as compared to healthy calves ( 8 h). The mean maximum urine concentration (Cumax) in febrile (40.86?±?2.19 µg/ml) also did not differ significantly as compared with healthy calves (39.38?±?2.43 µg/ml). No significant difference in various pharmacokinetic parameters of plasma was observed in healthy calves ( β?=?0.23?±?0.01/h ; t1/2 β?=?3.00?±?0.17 h and MRT?=?4.66?±?0.14 h ) and febrile calves ( β?=?0.23?±?0.01/ h; t1/2 β?=?3.05?±?0.16 h and MRT?=?5.04?±?0.14 h ) . The mean value of β, and t ½ β calculated in urine also did not differ between healthy and febrile calves. However, the value of MRT(3.79?±?0.07 h) and ClB(1.65?±?0.09 ml/kg/min) calculated in urine of febrile calves significantly(p?B?=?2.09?±?0.13 ml/kg/min). Based on kinetic profile levofloxacin may be given orally at the dose rate of 1.49 mg/kg B.W.at 8 h intervals in febrile calves.  相似文献   

13.
24只苏禽黄羽肉鸡随机分成2组,分别按10 mg/kg体重剂量静注和内服乳酸恩诺沙星。测定乳酸恩诺沙星在鸡体内的药动学参数和生物利用度。恩诺沙星血药浓度数据用3p87计算机软件处理。静注乳酸恩诺沙星后的血药浓度-时间数据符合二室开放模型,主要动力学参数:t1/2α(0.45±0.16)h,t1/2β(7.02±1.42)h,CL(s)(0.38±0.10)L/kg/h,AUC(23.69±5.56)(mg/L)×h。内服乳酸恩诺沙星的血药浓度时间数据,符合有吸收因素二室模型,主要动力学参数:t1/2ka(0.60±0.01)h,t1/2ke(8.25±1.73)h,tpeak(2.44±0.17)h,Cmax(1.44±0.30)mg/L,AUC(20.74±3.80)(mg/L)×h,F 87.54%。结果表明,乳酸恩诺沙星可溶性粉在鸡体内具有吸收快、分布广、消除较慢以及内服生物利用度高的药动学特征。  相似文献   

14.
1. The pharmacokinetics of levofloxacin were investigated in Japanese quails after a single dose of 10?mg/kg BW, given either intravenously or orally.

2. Following intravenous administration, the mean value of distribution at steady state (Vdss), total body clearance (Cltot) and mean residence time (MRT) of levofloxacin were 1·25?l/kg, 0·39?l/h/kg and 2·72?h, respectively.

3. Following oral administration of levofloxacin, the peak plasma concentration (Cmax) was 3·31?µg/ml and was achieved at a maximum time (Tmax) of 2?h. Mean residence time (MRT), mean absorption time (MAT) and bioavailability were 4·26?h, 1·54?h and 69·01%, respectively. In vitro plasma protein binding of levofloxacin was 23·52%.

4. Based on pharmacokinetic and pharmacodynamic integration, an oral dose of 10?mg/kg levofloxacin for every 12?h is recommended for a successful clinical effect in quails.  相似文献   

15.
本试验将16只成年健康猫随机分成2组,每组8只(公母各半),采用单剂量随机平行对照试验设计,分别单剂量(4 mg/kg体重,以米尔贝肟计)经口内服国产(受试品)和进口(对照品)米尔贝肟吡喹酮片,进行其在猫体内的药代动力学比较研究.给药后按预定时间采集血样,采用HPLC法进行血浆中米尔贝肟和吡喹酮含量的测定,实测血药浓度—时间数据采用Winnonlin 5.2药代动力学分析软件计算药代动力学参数.结果显示,米尔贝肟吡喹酮片对照品单剂量内服后,米尔贝肟的消除半衰期(T1/2β)为(20.08±7.57)h,达峰时间(Tmax)和峰值浓度(Cmax)分别为6.00 h和(764.43±251.40)ng/mL,平均曲线下面积(AUC)为(15.00±5.05)ng/(L·h),平均滞留时间(MRT)(18.60±1.52)h;吡喹酮的消除半衰期(T1/2β)为(6.27±5.26)h,达峰时间(Tmax)和峰值浓度(Cmax)分别为(3.88±0.35)h和(1018.25±200.19)ng/mL,平均曲线下面积(AUC)为(8.69±2.07)ng/(L·h),平均滞留时间(MRT)(6.56±1.07)h.米尔贝肟吡喹酮片受试品单剂量内服后,米尔贝肟的消除半衰期(T1/2β)为(15.07±4.05)h,达峰时间(Tmax)和峰值浓度(Cmax)分别为(5.25±1.04)h和(806.65±299.01)ng/mL,平均曲线下面积(AUC)为(15.18±5.97)ng/(L·h),平均滞留时间(MRT)(17.47±1.97)h,相对生物利用度为101.20%;吡喹酮的消除半衰期(T1/2β)为(11.11±4.62)h,达峰时间(Tmax)和峰值浓度(Cmax)分别为(5.25±1.04)h和(880.47±241.27)ng/mL,平均曲线下面积(AUC)为(9.64±2.76)ng/(L·h),平均滞留时间(MRT)(10.52±1.52)h,相对生物利用度为119.16%.与对照品相比,受试品的药代动力学参数中除米尔贝肟的消除半衰期显著缩短、吡喹酮的达峰时间显著延迟外(P<0.05),其他药代动力学参数差异均不显著(P>0.05).结果表明,猫经口内服米尔贝肟吡喹酮片受试品与对照品后具有相似的药代动力学特征.  相似文献   

16.
为研究牛蒡苷元在仔猪体内的药物动力学特征,了解其在仔猪体内的吸收、分布、转化和排泄规律,为新兽药的研发和临床用药提供理论参考依据。选取健康仔猪8头(30.0±5.0 kg),以2.0 mg/kg.bw的牛蒡苷元静脉注射给药,不同时间点前腔静脉采血,采用HPLC法对猪血浆中牛蒡苷元的浓度进行分析。牛蒡苷元静脉注射后,符合无吸收二室模型,主要药动学参数为:分布半衰期(t1/2α)0.166±0.022 h;消除半衰期(t1/2β)3.161±0.296 h;表观分布容积(Vd)0.231±0.033 L/kg;清除率(CLb)0.057±0.003 L/(h·kg);药时曲线下面积(AUC)1.189±0.057 μg·h·mL-1。由此可知,牛蒡苷元静脉注射后在仔猪体内分布迅速、分布组织较少、代谢消除较快。  相似文献   

17.
为研究牛蒡子粉在仔猪体内的药物动力学特征,了解其在仔猪体内的吸收、分布、转化和排泄规律,为新兽药的研发和临床用药提供理论参考依据。选取健康仔猪8头(30.0±5.0kg),以1.0g/kg.bw的牛蒡子粉灌胃给药,不同时间点前腔静脉采血,采用HPLC法对猪血浆中牛蒡苷元的浓度进行分析。牛蒡子粉灌胃给药后,符合有吸收二室模型,主要药物动力学参数为:吸收半衰期(t1/2ka)为0.274±0.102 h,分布半衰期(t1/2α)1.435±0.725h;消除半衰期(t1/2β)63.467±29.115 h;表观分布容积(Vd)1.680±0.402 L/kg;清除率(CLb)0.076±0.028L/(h.kg);达峰时间(tmax)为0.853±0.211 h,峰浓度(cmax)为0.430±0.035μg /mL,药时曲线下面积(AUC)14.672±4.813μg.h/mL。试验表明:牛蒡子粉口灌后在仔猪体内吸收迅速、分布广泛、代谢消除缓慢,能够较长时间发挥药理作用。  相似文献   

18.
姜黄素固体分散体在猪体内的比较药动学研究   总被引:1,自引:1,他引:0  
本研究首次建立了测定猪血浆中姜黄素的高效液相色谱串联质谱法(HPLC-MS/MS),比较了在内服给药途径下,姜黄素固体分散体和姜黄素预混剂在仔猪体内的药动学特征。选用16头7周龄左右健康二元杂交猪(约克夏×长白),公母各半,随机分为2组,每组8头,按100 mg·kg-1(以姜黄素计)分别灌服姜黄素固体分散剂和姜黄素预混剂,不同时间点采集血浆样品,经提取、净化后采用HPLC-MS/MS测定血浆中姜黄素的药物浓度,使用WinNonlin 5.2.1软件非房室模型计算、分析姜黄素在猪体内的药动学参数。结果显示,仔猪灌服姜黄素固体分散体和姜黄素预混剂后的药时曲线下面积(AUC)分别为(104.53±38.67)和(37.82±11.48)h·ng·mL-1;达峰时间(Tmax)分别为(3.25±0.38)和(2.31±0.37)h;峰浓度(Cmax)分别为(26.65±9.65)和(9.55±2.75)ng·mL-1;消除半衰期(t1/2β)分别为(3.55±2.17)和(6.93±0.86)h;平均驻留时间(MRT)分别为(5.23±0.53)和(4.26±0.47)h,统计分析表明,与预混剂相比,仔猪灌服姜黄素固体分散体后,主要药动学参数差异显著(P<0.01),Tmax明显延迟,Cmax显著提高,AUC明显增大,姜黄素固体分散体的相对生物利用度为280.39%。结果表明,姜黄素固体分散体可改善姜黄素在肠道的吸收,提高姜黄素的生物利用度,为今后姜黄素固体分散体的开发和临床应用提供科学依据。  相似文献   

19.
A method for the detection of curcumin in pig plasma by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established firstly and the pharmacokinetics of curcumin solid dispersion and curcumin premix in piglets were studied. Sixteen healthy piglets (Yorkshire×Changbai), seven-week aged, half male and half female, were randomly divided into two groups receiving curcumin solid dispersant and curcumin premix orally at the dose of 100 mg·kg-1, respectively. Then plasma samples were collected at different time points, and the blood concentration of curcumin was determined by HPLC-MS/MS. The WinNonlin 5.2.1 software was used to analyze and calculate the pharmacokinetic parameters. The pharmacokinetic parameters of curcumin solid dispersion and curcumin premix were as follows: the area under the curve (AUC) was (104.53±38.67) and (37.82±11.48) h·ng·mL-1, time to peak concentration (Tmax) was (3.25±0.38) and (2.31±0.37) h, peak concentration (Cmax) was (26.65±9.65) and (9.55±2.75) ng·mL-1, respectively, elimination half-life time (t1/2β) was (3.55±2.17) and (6.93±0.86) h, mean residence time (MRT) was (5.23±0.53) and (4.26±0.47) h. The statistical analysis showed significant differentce (P<0.01) between curcumin solid dispersion and premix in parameters, the Tmax of curcumin solid dispersion was delayed significantly, the Cmax was increased obviously and the AUC was improved after the piglets were given curcumin solid dispersion. Compared with curcumin premix, the relative bioavailability of curcumin solid dispersion was 280.39%. The results showed that curcumin solid dispersion could improve the dissolution and absorption of curcumin in the intestinal tract and improve the relative bioavailability of curcumin, which provided a scientific basis for the development and clinical application of curcumin solid dispersions in the future.  相似文献   

20.
克蚕菌的药物动力学研究   总被引:6,自引:4,他引:2  
刘挺  黄可威 《蚕业科学》2002,28(2):129-133
采用微生物法测定 5龄健康家蚕食下克蚕菌后的经时过程血药浓度。用药物动力学软件结合EXCEL程序拟和计算 ,克蚕菌在蚕体内的血药浓度—时间曲线符合一级吸收动力学和单室模型特征。其血药浓度随时间变化的单室模型关系式为C =16 .6 2 87(e-0 119t-e-0 742t) ,实测血药浓度—时间曲线与理论血药浓度—时间曲线的相关系数R2 =0 .96 33。求得克蚕菌的药物动力学参数分别为 :ka=(0 .74 2± 0 .12 3) /h ;k =(0 .119± 0 .0 0 3) /h ;t1/ 2 (a)=(0 95 8± 0 180 )h ;t1/ 2 =(5 82 1± 0 15 3)h ;Cmax=(9 70 7± 0 16 3) μg/mL ;Tmax=(2 .971± 0 .32 2 )h ;VD=(0 .5 4 3± 0 .0 2 5 )L ;CL =(0 .0 6 5± 0 .0 0 1)L/h ;AUC =(117.5 0 3± 3.30 6 )h·(μg/mL)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号