首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基因Pi-ta和Pi-b是最早被克隆的两个稻瘟病抗性基因,在粳稻中表现出持久稳定的稻瘟病抗性,因而被广泛用于稻瘟病抗性育种。为明确上述基因在江苏粳稻中的分布,为抗病育种提供依据,本研究利用Pi-ta和Pi-b的功能标记,对40个粳稻品种和665份粳稻新品系进行相关基因型的分子检测。结果表明,抗性基因Pi-ta和Pi-b在江苏粳稻品种中具有一定的分布,其中Pi-b的分布频率高于Pi-ta的频率,连粳系列品种大都不携带Pi-ta和Pi-b抗性基因,而武粳系列品种则基本含有上述抗性基因。粳稻新品系携带抗性基因Pi-ta的频率与推广品种相比变化不大,但携带抗性基因Pi-b的频率明显高于推广品种,这说明人工改良水稻品种有利于抗病基因Pi-b频率的提高。四种基因型中,pi-ta/Pi-b的分布频率最高,为60.0%,其次为Pi-ta/Pi-b,占33.5%,基因型pi-ta/pi-b的分布频率为3.9%,而Pi-ta/pi-b的分布频率最低,只占2.6%。从4个组合的抗性基因来源看,抗性基因Pi-ta则可能来自武香粳14、武粳15或南粳44,而Pi-b则可能来自武粳13、武香粳14、武粳15或南粳44。从4种基因型后代的获得频率看,以南粳44//武粳13/关东194获得抗性基因型Pi-ta/Pi-b后代的频率最高。  相似文献   

2.
宁夏水稻品种抗稻瘟病基因Pi-ta、Pi-b和Pi9的检测分析   总被引:1,自引:0,他引:1  
为明确宁夏水稻品种中抗稻瘟病基因Pi-ta、Pi-b和Pi9的分布情况,为宁夏水稻抗穗颈瘟病的分子标记辅助选择育种奠定基础。利用Pi-ta、Pi-b和Pi9 3个与抗稻瘟病基因紧密连锁的功能标记,对94份宁夏水稻品种进行抗稻瘟病基因的分子检测。结果表明,宁夏水稻品种中含Pi-ta抗性基因的占46.8%,含Pi-b抗性基因的占93.6%,含Pi9抗性基因的占27.7%,同时含有Pi-ta和Pi-b抗性基因的占44.7%,同时含有Pi-ta、Pi-b和Pi9抗性基因的占12.8%。根据报道,Pi-ta、Pi-b基因的联合效应与穗颈瘟抗性正相关系数为0.71,表明从宁夏水稻品种中选育抗穗颈瘟品种是有基因基础的。  相似文献   

3.
利用稻瘟病抗性基因Pi-b、Pi-ta等位基因的显性标记对48份江苏省粳稻品种和618份粳稻新品系进行检测,并结合6个代表性稻瘟病生理小种的穗颈瘟抗性鉴定反应,分析抗性基因在江苏省粳稻中的分布及其与穗颈瘟抗性的关系。结果显示:抗性基因Pi-b和Pi-ta在江苏省粳稻品种和品系中存在广泛分布,其中抗性基因Pi-b的频率明显高于Pi-ta。不同生育类型的品种中,抗性基因Pi-b和Pi-ta在中熟中粳中的分布最少,且pi-b/pi-ta基因组合品种所占比例最高。从基因组合与抗性的关系来看,含单个抗性基因的新品系无论是感病率还是病情指数都明显低于不含Pi-b和Pi-ta抗性基因的品系,且Pi-ta基因的抗性效果要好于Pi-b基因,而同时含有两个抗性基因的新品系其抗性水平又优于只含单个抗性基因的粳稻品系。因此,在育种中选择两个抗性基因互补的粳稻作亲本,在后代群体中进行基因聚合,是提高江苏省粳稻穗颈瘟抗性最快速、有效的方法。  相似文献   

4.
【目的】本研究明确了稻瘟病抗性基因Pi-ta、Pi-9、Pi-b和Pi-zt在汉中地区水稻材料中的分布及其组合的抗病有效性。【方法】利用4个抗病基因的分子标记,对汉中地区水稻材料进行了抗瘟基因型分子检测。【结果】抗性基因Pi-zt分布频率最高,其次为抗性基因Pi-b和Pi-9,频率最低的是Pi-ta;含有不同抗瘟基因的组合表现出不同水平的抗瘟性,Pi-b和Pi-9对该地区的抗瘟性贡献较大,同时含有Pi-b、Pi-9和Pi-zt 3个基因可有效提升抗性水平。【结论】初步建立抗性基因数据库,为抗稻瘟病基因分子辅助聚合育种提供科学依据。  相似文献   

5.
稻瘟病是水稻生产上的主要病害,利用稻瘟病抗性基因培育抗病品种是防治稻瘟病最经济、最有效的方法。为了明确稻瘟病抗性基因Pi-ta、Pi-b、Pi54和Pi-km在水稻抗病育种中的利用价值,本研究利用这4个抗性基因的功能标记,对在稻瘟病菌圃经多年抗性筛选的60份资源材料进行基因型鉴定,并通过连续两年稻瘟病菌接种鉴定对不同抗性基因的抗稻瘟病发展趋势进行调查分析。结果表明,60份试验材料中,只携带Pi-ta基因的有14份,占总材料的23.3%,携带Pi-ta+Pi-b基因组合的有9份,占总材料的15.0%,携带Pi-b+Pi54基因组合的有9份,占总材料的15.0%,携带Pi-ta+Pi-b+Pi54基因组合的有12份,占总材料的20.0%。在连续两年的接种鉴定中,Pi-ta、Pi-ta+Pi-b和Pi-ta+Pi-b+Pi54基因组合均无4级高感;只有Pi-b+Pi54基因组合出现4级高感材料。通过连续两年抗性基因与穗颈瘟发病等级的相关性分析,发现几乎所有基因的抗病能力都在不断减弱。因此,在抗稻瘟病新品种选育中抗稻瘟病新抗源的挖掘和新抗性基因的导入已经迫在眉睫。  相似文献   

6.
基因Pi-ta和 Pi-b是最早被克隆的两个稻瘟病抗性基因,在粳稻中表现出持久稳定的稻瘟病抗性,因而被广泛用于稻瘟病抗性育种。为明确上述基因在江苏粳稻中的分布,为抗病育种提供依据,本研究利用 Pi-ta和 Pi-b的功能标记,对40个粳稻品种和665份粳稻新品系进行相关基因型的分子检测。结果表明,抗性基因 Pi-ta和Pi-b在江苏粳稻品种中具有一定的分布,其中 Pi-b的分布频率高于Pi-ta的频率,连粳系列品种大都不携带 Pi-ta和 Pi-b抗性基因,而武粳系列品种则基本含有上述抗性基因。粳稻新品系携带抗性基因Pi-ta的频率与推广品种相比变化不大,但携带抗性基因 Pi-b的频率明显高于推广品种,这说明人工改良水稻品种有利于抗病基因 Pi-b频率的提高。四种基因型中, Pi-ta/Pi-b的分布频率最高,为60.0%,其次为 Pi-ta/Pi-b,占33.5%,基因型 Pi-ta/Pi-b的分布频率为3.9%,而Pi-ta/Pi-b的分布频率最低,只占2.6%。从4个组合的抗性基因来源看,抗性基因 Pi-ta则可能来自武香粳14、武粳15或南粳44,而 Pi-b则可能来自武粳13、武香粳14、武粳15或南粳44。从4种基因型后代的获得频率看,以南粳44//武粳13/关东194获得抗性基因型Pi-ta/Pi-b后代的频率最高。  相似文献   

7.
基因Pi-ta和Pi-b是最早被克隆的两个稻瘟病抗性基因,在粳稻中表现出持久稳定的稻瘟病抗性,因而被广泛用于稻瘟病抗性育种。为明确上述基因在江苏粳稻中的分布,为抗病育种提供依据,该研究利用Pi-ta和Pi-b的功能标记,对40个粳稻品种和665份粳稻新品系进行相关基因型的分子检测。结果表明,抗性基因Pi-ta和Pi-b在江苏粳稻品种中具有一定的分布,其中Pi-b的分布频率高于Pi-ta的频率,连粳系列品种大都不携带Pi-ta和Pi-b抗性基因,而武粳系列品种则基本含有上述抗性基因。粳稻新品系携带抗性基因Pi-ta的频率与推广品种相比变化不大,但携带抗性基因Pi-b的频率明显高于推广品种,这说明人工改良水稻品种有利于抗病基因Pib频率的提高。4种基因型中,Pi-ta/Pi-b的分布频率最高,为60.0%,其次为Pi-ta/Pi-b,占33.5%,基因型Pi-ta/Pi-b的分布频率为3.9%,而Pi-ta/Pi-b的分布频率最低,只占2.6%。从4个组合的抗性基因来源看,抗性基因Pi-ta则可能来自武香粳14、武粳15或南粳44,而Pib则可能来自武粳13、武香粳14、武粳15或南粳44。从4种基因型后代的获得频率看,以南粳44//武粳13/关东194获得抗性基因型Pi-ta/Pi-b后代的频率最高。  相似文献   

8.
水稻稻瘟病是汉中地区水稻的主要病害之一,选育抗病品种是防治稻瘟病最经济有效的方法。该研究以同时含有稻瘟病抗性基因Pi-ta和Pi-km的蜀恢527,含有稻瘟病抗性基因Pi-b的R150为基因供体配置杂交组合,利用Pi-ta、Pi-km和Pi-b的基因标记对分离世代进行基因位点检测,结合田间多代选育、抗性筛选将3个基因转育到同一品种,通过分子标记与田间多代性状筛选,选育出抗病、高产、优质水稻新品种"陕恢206"。研究表明,利用分子标记辅助选择,为选育多抗水稻品种提供了简单、便捷的选育方法,同时也为水稻抗病育种提供了新的遗传资源。  相似文献   

9.
【目的】稻瘟病是水稻三大病害之一,选育抗病品种是防治稻瘟病最有效的方式。【方法】本研究以携带稻瘟病抗性基因Pi-9的‘盐稻10号’为母本,以同时携带稻瘟病抗性基因Pi-ta和Pi-b的‘武运粳8号’为父本杂交,进行基因聚合育种。利用Pi-ta、Pi-b和Pi-9的特异性分子标记对杂交后代的分离株系进行基因检测,结合田间选育,抗性接种鉴定。【结果】将Pi-ta,Pi-b和Pi-9基因聚合于一体,选育出抗稻瘟病、产量高,米质优的水稻新品系‘盐稻1626’。【结论】该品种适宜在我国北方黄淮海粳稻区域推广种植,不仅为育种家提供水稻抗性多基因聚合育种的方法,而且为水稻稻瘟病抗性育种创制了新的种质资源。  相似文献   

10.
为明确Pi-ta和Pi9稻瘟病抗性主效基因在32份粳稻骨干亲本中的分布状况,利用抗稻瘟病基因Pi-ta和Pi9的分子标记对32份粳稻骨干亲本进行检测。结果表明,在32份骨干亲本中,Pi-ta抗性基因检出率为46.88%,Pi9抗性基因检出率为12.50%,同时检测到Pi-ta和Pi9抗病基因,检出率为3.12%,不含有Pi-ta和Pi9抗病基因的材料占比为43.75%。在骨干亲本中,Pi-ta单个基因的检出率较高,Pi9单个基因的检出率较低,同时含有Pi-ta和Pi9抗病基因的材料较少,因此可见,多个抗稻瘟病基因的聚合育种是今后水稻抗病育种的重点。  相似文献   

11.
为明确黄淮稻区早熟水稻品种(品系)的稻瘟病抗性,对145份黄淮稻区早熟水稻品种(品系)进行连续2年的接种鉴定,并利用Pi-ta、Pi-b、Pi-km、Pi-54、Pi-5和Pi-gm 6个抗病基因的分子标记进行抗稻瘟基因型检测.抗性基因在检测品种(品系)中的分布结果表明,抗性基因Pi-b分布比例最高,检出率为57.9%,其次是抗性基因Pi-km、Pi-ta、Pi-54和Pi-5,检出率分别为51.0%、42.1%、32.4%及32.4%,抗性基因Pi-gm分布比例最低,仅有4.1%.2019-2020年连续2年的人工接种鉴定结果显示,74.5%和68.3%的品种(品系)表现为感病,说明黄淮稻区早熟品种(品系)的稻瘟病抗性较差,抗病材料较少.携带抗性基因Pi-ta、Pi-b、Pi-km、Pi-54、Pi-5和Pi-gm的品种(品系),2019年抗性比例分别为42.6%、21.4%、27.7%、34.3%、27.7%和100.0%,2020年抗性比例分别为49.2%、26.2%、25.5%、32.9%、34.0%和100.0%.6个基因中,Pi-gm抗性比例最高,达到100.0%,Pi-ta次之,抗性比例达45.9%,而Pi-b最差,抗性比例仅为23.8%.黄淮稻区早熟水稻品种(品系)抗稻瘟病能力较差,需要通过聚合多个抗性基因来提高抗性,特别需要加强Pi-gm等新的抗稻瘟病基因的应用.  相似文献   

12.
通过对江苏省育种单位提供的95份迟熟中粳新材料进行稻瘟病抗性基因检测与穗颈瘟抗性分析发现,携带Pi-ta基因的材料有59份,携带Pi-b基因的材料有74份,携带Pi-kh基因的材料有85份,同时携带Pi-ta、Pi-b、Pi-kh抗病基因的材料有37份;其中有1份材料苗瘟抗性等级为5级,其穗颈瘟抗性等级为7级,另外有12份材料的稻瘟病抗性综合指数 5. 00。结果表明,Pi-ta等抗病基因的抗性正在丧失。  相似文献   

13.
【目的】水稻稻瘟病抗性基因Pi2对稻瘟病生理小种具有广谱抗性,开发Pi2的KASP分子标记并对其评价,为抗稻瘟病水稻品种分子育种提供简便、可靠的基因分型检测方法。【方法】利用593份自然群体中筛选出的不同抗性和亲缘关系的2份材料H-74和H-78,针对Pi2基因核心区域的SNP位点开发成KASP标记Pi2-C3。【结果】利用标记Pi2-C3对自然群体中的84份材料进行KASP基因分型,结果表明,该标记可以准确地将不同水稻材料的Pi2位点分为抗病基因型、杂合基因型和感病基因型,是一种高效鉴定抗稻瘟病基因Pi2的方法。利用标记Pi2-C3对阳江市病圃材料进行检测,结合表型调查结果发现,检测到含有Pi2基因的46份材料均表现出不同程度的稻瘟病抗性,表明该标记可以用于检测材料在病圃的发病情况。【结论】本研究采用KASP技术,开发了能准确检测Pi2基因的特异性分子标记Pi2-C3,并建立一套水稻Pi2基因的KASP基因分型体系,对提高抗性育种效率,改良抗稻瘟病水稻品种具有重要应用价值。  相似文献   

14.
选育和利用水稻抗性品种,是防治稻瘟病和褐飞虱的有效方法。利用基因功能性标记对2个优质不育系和16个恢复系的抗性基因Pi-b,Pi-k,Pi-ta,bph2,Bph3进行检测,结果 11份材料含有Pi-b基因,13份含有Pi-k基因,9份同时含有Pi-b基因和Pi-k基因,3份含有bph2基因。通过对抗性基因的分子鉴定,为多基因聚合、选育广谱持久抗稻瘟病和褐飞虱的优良品种奠定基础。  相似文献   

15.
为探明宁夏水稻种质资源含抗稻瘟病基因的数量和种类,为宁夏水稻抗稻瘟病的分子标记辅助选择育种奠定基础。利用与抗稻瘟病基因Pi-b、Pi-d2、Pi-5、Pikh紧密连锁的功能标记对75份宁夏自育及外引水稻材料进行抗病基因的分子检测。结果表明,抗性基因Pikh的分布频率最高,在测试品种中检出率为74. 7%;其次是Pi-b基因,检出率为49. 3%;检出率较低的是Pi-5、Pi-d2抗性基因,分别为30. 67%、9. 3%。其中有6份材料为杂合,分别为大胚稻、巨胚稻、小粒糯、宁粳43号、花119、Agostone,4个抗稻瘟病基因都没有的材料有5份,为银玉、垦08-1806、通粘1号、空育131、越光。说明宁夏水稻材料中含有广谱持久抗性的基因较少,可以利用Pi-d2、Pi-5等抗性基因进行分子标记辅助选择育种,培育持久抗稻瘟病的水稻新品种。  相似文献   

16.
利用水稻稻瘟病抗性基因建立2套多重PCR体系,体系Ⅰ、Ⅱ分别同时检测稻瘟病抗性基因Pikh与Pi1、Pita与Pib,并用这2套体系对114份杂交后代水稻材料中抗病基因进行检测。结果表明:114份材料中含Pita抗性基因的有81份,含Pib的有106份,含Pikh的有35份,含Pi1的有3份。穗颈瘟接种鉴定结果显示,114份材料中人工接种鉴定表现为高抗的有2份,抗病的有27份,中抗的有32份,感病的有33份,高感的有20份;Pita、Pikh基因与穗颈瘟的抗性呈显著正相关,相关系数分别为0.297、0.239;Pib、Pi1基因与穗颈瘟的抗性相关不显著。  相似文献   

17.
水稻抗稻瘟病Pib基因的分子标记辅助选择与应用   总被引:20,自引:2,他引:18  
 【目的】为探索抗稻瘟病Pib基因的分子标记用于水稻抗稻瘟病辅助选育,36个四川地方稻瘟病菌株被用来检测Pib基因的抗性。同时利用检测感病等位基因Pib的显性标记Lys145,并结合前人报道的检测抗病等位基因Pib的显性标记Pibdom组成一套水稻抗稻瘟病基因Pib显性分子标记。【方法】利用这套水稻抗稻瘟病基因Pib显性分子标记对122个杂交稻亲本或材料进行分子鉴定,并分别采用稻瘟病菌株05-12(ZB13)和05-30(ZC15)单小种接种试验进行致病性测试。【结果】所检测的122个杂交稻亲本或材料中,只有7个杂交稻亲本或材料含抗病基因Pib,且对稻瘟病菌菌株ZB13和ZC15表现抗病反应。此外,利用这套水稻抗稻瘟病基因Pib显性分子标记对600个杂交F2代单株进行早期筛选,得到185个抗病基因Pib纯合的单株,田间抗性调查结果与抗病基因分子检测结果一致。【结论】该套显性分子标记可应用于水稻抗稻瘟病基因Pib的分子标记辅助选育。  相似文献   

18.
【目的】为了分析不同抗性基因和基因组合对穗颈瘟抗性的变化。【方法】利用水稻稻瘟病抗病基因Pi-ta、Pi-b、Pigm和Pi54的功能或紧密连锁标记,对经过多年抗性筛选的80份骨干亲本材料进行基因型分析,并进行连续两年穗颈瘟接种鉴定。【结果】在80份试验材料中,只有4份携带Pi-b基因,5份携带Pi54基因,8份携带Pi-b+Pi54基因组合、10份携带Pi-b+Pi54+Pigm基因组合,只有Pi-b+Pi54+Pigm基因组合没有出现高感材料。连续两年穗颈瘟接种鉴定结果与基因型的相关性分析显示,单个抗病基因的抗病能力在逐步减弱,甚至丧失。【结论】在水稻品种选育中,聚合抗性强、抗谱互补的基因是增强水稻抗病能力的有效途径。  相似文献   

19.
江苏省粳稻品种抗稻瘟病基因型与穗颈瘟抗性分析   总被引:2,自引:0,他引:2  
稻瘟病是江苏省粳稻的主要病害,以穗颈瘟的危害最为严重,选育抗病品种是防治该病害最有效的方法。为了明确江苏省粳稻穗颈瘟的主要抗病基因以及主要粳稻品种的抗稻瘟病基因型,利用稻瘟病抗性基因Pita、Pi-b、Pi-k~h、Pi-km的功能标记对2007-2013年江苏省审定的粳稻品种进行基因型检测。结果表明:65份审定的粳稻品种中同时含有3个稻瘟病抗病基因的品种6份,占审定品种的9.2%;同时含有2个稻瘟病抗病基因的品种23份,占审定品种的35.4%;含有1个稻瘟病抗病基因的品种27份,占审定品种的41.5%;不含有这4个抗病基因的品种9份,占审定品种的13.9%。2014年穗颈瘟接种鉴定结果表明:含有3个抗病基因的6份品种均表现为抗穗颈瘟;含有2个抗病基因的品种中19份品种抗穗颈瘟,4份品种感穗颈瘟;含有1个抗病基因的品种中12份品种抗穗颈瘟,15份品种感穗颈瘟;不含有这4个抗病基因的品种中1份品种抗穗颈瘟,8份品种感穗颈瘟。相关性和回归分析结果表明:稻瘟病抗性基因Pi-ta、Pi-b、Pi-km与穗颈瘟的抗性呈正相关,相关系数分别0.81、0.11和0.15;稻瘟病抗性基因Pi-k~h与穗颈瘟抗性呈负相关,相关系数为-0.05。  相似文献   

20.
稻瘟病是影响水稻生产的主要病害之一,生产上对稻瘟病的防治没有特效的方法。更多依赖水稻品种自身的抗性来抵御病害的发生。因此,稻瘟病抗性的遗传和育种研究就具有十分重大的意义。在稻瘟病抗性遗传研究方面,到目前已经鉴定和定位了40多个抗稻瘟病基因。克隆了2个稻瘟病抗性基因Pi-b和Pi-ta。培育抗稻瘟病的水稻品种可采用如下策略:广泛收集稻瘟病抗源。经过稻瘟病老重病区长期自然选择得到的高抗材料和含有已定位抗性基因的抗源材料要作为重点抗源亲本:检测稻瘟病茵群体结构的变化,获取小种变化的准确信息:常规的有性杂交和转基因技术相结合导入抗性基因;人工接种抗性鉴定、分子标记辅助选择和病区病圃抗性鉴定技术相结合.提高杂交后代材料抗性鉴定的准确性.加快育种进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号