首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Recent findings suggest that recruitment of Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus) depends on survival during not only the first feeding larval stage in the Japanese coastal waters and the Kuroshio front but also during the post‐larval and juvenile stages in the Kuroshio Extension. Spatial distributions of juvenile anchovy and sardine around the Shatsky Rise area in the Kuroshio Extension region and the Kuroshio–Oyashio transition region are described, based on a field survey in the late spring using a newly developed mid‐water trawl for sampling juveniles. All stages of anchovy from post‐larvae to juveniles were obtained in the northern Shatsky Rise area. The Kuroshio Extension bifurcates west of the Shatsky Rise area and eddies are generated, leading to higher chlorophyll concentrations than in the surrounding regions in April and May. When Japanese anchovy and sardine spawn near the Kuroshio front or the coastal waters south‐east of Japan, their larvae are transported by the Kuroshio Extension and are retained in the Shatsky Rise area, which forms an important offshore nursery ground, especially during periods of high stock abundance.  相似文献   

2.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

3.
We have numerically modeled the advection and diffusion of sardine eggs and larvae to investigate the larval transport processes of Japanese sardine from the spawning grounds by the Kuroshio.
The results indicated that the offshore drift current induced by the winter monsoon and the location of the spawning ground have significant effects on the survival of the Japanese sardine. The contribution of the drift current, the distance of the spawning ground from the Kuroshio axis, and the eddy diffusivity to the larval retention in the coastal area is approximately expressed by the following equation: where R is the retention rate in the coastal area, a the variance of initial distribution of eggs, T the time after the eggs were spawned, – V0 the velocity of the wind-induced offshore current, y0 the distance of the center of the spawning area from the Kuroshio axis, and K the coefficient of horizontal eddy diffusivity.
The year-to-year variation in larval survival rates stimulated by the two-dimensional model are consistent with those estimated previously by using field data of egg and larval abundance during 1978–1988.  相似文献   

4.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献   

5.
To clarify the effects of temperature on the recruitment of chub mackerel (Scomber japonicus) in the North Pacific, we investigated the influence of winter surface temperature (WST) on spawners at the time of maturity around the spawning grounds and the influence of ambient spring temperature on larvae using estimated temperature (ET) obtained from particle tracking experiments. We found a significant positive correlation between ET approximately 10 days following hatching and the recruitment per spawning stock biomass (RPS) after 2000. The closer (more meandering) the Kuroshio Current (KC) axis was in relation to the spawning ground, the higher (lower) the spring surface temperature and the higher (lower) RPS was in the spawning ground. In contrast, WST inside KC near the maturity/spawning ground was significantly negatively correlated with RPS. A significant negative correlation between the temperatures in winter and spring was detected in the area after 2000, when the conditions of the Pacific decadal oscillation index and the stability of the Kuroshio Extension were synchronous, indicating that KC shifted northward during this time. The reversed temperature pattern was consistent with the winter–spring movement of KC axis in the offshore direction and was correlated with the winter–spring difference in the intensity of the Aleutian low. These results suggest that the annual variation in chub mackerel recruitment after 2000 was strongly affected by the combined effects of ambient temperature because of the reversal of conditions that occurred between winter and spring around the maturity/spawning ground, which was related to the KC path.  相似文献   

6.
ABSTRACT:   Transport and survival of larvae of pelagic fishes in the Kuroshio system region were studied using Lagrangian drifter data recorded from 1990 to 2003. A large portion of the drifters from the Kuroshio area south of Japan spread around the Kuroshio Extension up to 170°E, while some moved south to the offshore area of the Kuroshio because of a recirculation gyre. The monthly mean eastward movement from areas south of Japan was approximately 800–900 km, which was smaller than previous numerical estimates. The results of a survival model assuming optimal temperatures for larvae suggest that surface waters during the observation period were too warm for larval Japanese sardine, which has an optimal temperature of 16°C, and the adult abundances did not increase during the observation period. In contrast, the spawning ground temperatures and transport conditions from an area south-west of Japan in April–June matched the requirement for the larval Japanese anchovy, which has an optimal temperature of 22°C. The combined effects of temperature variations due to seasonality and water mass mixing are suggested to play an important role in determining the environmental temperatures that occur in an area.  相似文献   

7.
We constructed a numerical model reproducing the transport, survival and individual growth of the early life stages of Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan during 1978–93. The causes of early life stage mortality, including the influence of the effects of the spatial relationship between the spawning grounds and the Kuroshio on the mortality rate, were investigated. Survival and transport from egg stage to 60 days after spawning were modelled daily in a 1 × 1 degree mesh cell and individual growth in the period was modelled in each region (Kuroshio, Inshore, Offshore and Transition regions). Individual growth and survival from 60 to 180 days after spawning were modelled daily in the Transition region. Environmental data were taken from outside the model system. Our simulation indicates that survival variability in the larval stage (5–25 mm in standard length) is the key factor in determining the year‐class strength. The simulation revealed that strong year classes occurred with good survival in the spawning ground and whilst entrained in the Kuroshio current being transported to the main feeding grounds in the Transition region. The simulation also indicated that survival rates in 1988–93 were low in the Inshore, Kuroshio and Offshore regions, which depressed the year‐class strength during that period.  相似文献   

8.
A paradigm of proportionality between spawning stock biomass (SSB) and total egg production (TEP) has been largely untested at multidecadal scales mainly because of difficulty in estimating annual TEP. Recently, this paradigm was directly tested for sardine (Sardinops melanostictus) and anchovy (Engraulis japonicus) at a multidecadal scale to reveal that SSB–TEP proportionality was partially distorted by intraspecific (sardine) and interspecific (anchovy) density dependence in total egg production per spawner individual (TEPPS) or unit weight (TEPPSW). In the present study, we demonstrate intraspecific density dependence in TEPPS/TEPPSW for chub mackerel (Scomber japonicus) in the Kuroshio Current system, using a proxy for TEPPS/TEPPSW, calculated from snapshot abundance data based on fishery‐independent egg surveys in combination with fishery‐dependent stock assessment data, at a multidecadal scale (38 years). TEPPS/TEPPSW exponentially declined with SSB, indicating a strong intraspecific density dependence in TEPPS/TEPPSW in chub mackerel. The observed phenomenon for chub mackerel was similar to that for sardine. Hence, intraspecific density dependence in TEPPS/TEPPSW may be a phenomenon that is generally applicable for species with a high maximum biomass and large population fluctuations. Lastly, we recommend the application of a TEP‐based framework to studies on recruitment mechanisms of fish.  相似文献   

9.
Horizontal distribution patterns of jack mackerel (Trachurus japonicus) larvae and juveniles were investigated in the East China Sea between 4 February and 30 April 2001. A total of 1549 larvae and juveniles were collected by bongo and neuston nets at 357 stations. The larvae were concentrated in the frontal area between the Kuroshio Current and shelf waters in the upstream region of the Kuroshio. The abundance of small larvae (<3 mm notochord length) was highest in the southern East China Sea (SECS) south of 28°N, suggesting that the principal spawning ground is formed in the SECS from late winter to spring. Jack mackerel also spawned in the northern and central East China Sea (NECS and CECS, respectively), as some small larvae were also collected in these areas. In the SECS, the abundance of small larvae was highest in February and gradually decreased from March to April. The habitat temperature of small larvae in the SECS and CECS (20–26°C) was higher than that in the NECS (15–21°C), suggesting higher growth rates in the SECS and CECS than in the NECS. The juveniles (10‐ to 30‐mm standard length) became abundant in the NECS off the west coast of Kyushu Island and CECS in April and were collected in association with scyphozoans typical of the Kuroshio waters. However, juveniles were rarely collected in the SECS, where the small larvae were concentrated. Considering the current systems in the study area, a large number of the eggs and larvae spawned and hatched in the SECS would be transported northeastward by the Kuroshio and its branches into the jack mackerels’ nursery grounds, such as the shallow waters off the west coast of Kyushu and the Pacific coast of southern Japan.  相似文献   

10.
Winter‐to‐spring variability in sea surface temperature (SST) and mixed layer depth (MLD) around the Kuroshio current system and its relationship to the survival rate (ln [recruit per spawning stock biomass], LNRPS) of Japanese sardine (Sardinops melanostictus) were investigated based on a correlation analysis of data from 1980 to 1995. The data were from a high‐resolution ocean general circulation model using the ‘Kuroshio axis coordinates’, in which the meridional positions are relocated to a latitude relative to the Kuroshio axis at each longitude, rather than the geographically fixed coordinates. A significant positive (negative) correlation between LNRPS and winter MLD (winter–spring SST) was detected near the Kuroshio axis from areas south of Japan (where eggs are spawned) to the Kuroshio Extension (where larvae are transported). This result is in contrast to previous studies using geographically fixed coordinates, which showed a significant correlation predominantly in the area south of the Kuroshio Extension in winter, where at this time few larvae have been found. From the late 1980s to early 1990s, when the survival rate was remarkably low, MLD around the axis was shallow and SST was high. Although MLD and SST show a significant correlation, significant partial correlations were also observed between February MLD and LNRPS when the contribution of SST was excluded, and between March SST and LNRPS when the contribution of MLD was excluded. We presume that MLD shoaling reduced the nutrient supply from deep layers, resulting in less productivity in the spring, and SST warming could have a negative influence on larval growth.  相似文献   

11.
Particle‐tracking experiments were performed to infer the distribution of larvae of the Japanese sardine (Sardinops melanostictus) and to detect effects of transport environment on sardine recruitment, using the output of a high‐resolution ocean general circulation model and observed data of sardine spawning grounds during 1978–2004. By the 60th day following spawning, approximately 50% of the larvae had been transported to the Kuroshio Extension (KE). Whereas the spawning period and grounds changed markedly in relation to the stock level, the proportion of larvae transported to the KE remained relatively constant and no significant correlations were found between sardine recruitment and the transport proportion. Instead, the recruitment was found to be correlated with physical parameters including the mixed layer depth and the sea surface temperature along several major transport trajectories of sardine larvae. The correlations were most significant for the trajectories in the region 0.5° south to 1° north of the Kuroshio axis (defined as the location of velocity maxima at each longitude) and for larvae spawned in February and March during the high stock period (1978–94), and for larvae spawned in March and April during the low stock period (1995–2004).  相似文献   

12.
Multiyear periods of relatively cold temperatures (2007–2013) and warm temperatures (2001–2005 and 2014–2018) altered the eastern Bering Sea ecosystem, affecting ocean currents and wind patterns, plankton community, and spatial distribution of fishes. Yellowfin sole Limanda aspera larvae were collected from the inner domain (≤50 m depth) of the eastern Bering Sea among four warm years (2002, 2004, 2005, 2016), an average year (2006), and three cold years (2007, 2010, 2012). Spatial distribution and density of larvae among those years was analyzed using generalized additive models that included timing of sea-ice retreat, areal coverage of water ≤0°C, and water temperature as covariates. Analyses indicated a combination of temperature effects on the location and timing of spawning, and on egg and larval survival, may explain the variation in larval density and distribution among years. During warm years, higher density and wider spatial distribution of larvae may be due to earlier spawning, an expansion of the spawning area, and higher egg and larvae survival due to favorable temperatures. Larval distribution contracted shoreward, and density was lower during cold conditions and was likely due to fish spawning closer to shore to remain in preferred temperatures, later spawning, and increased mortality. Predicted drift trajectories from spawning areas showed that larvae would reach nursery grounds in most years. Years when the drift period was longer than the pelagic phase of the larvae occurred during both warm and cold conditions indicating that settlement outside of nursery areas could happen during either temperature condition.  相似文献   

13.
根据2014年和2016-2018年5-8月在海州湾及邻近海域(33.3°N~35.6°N,119.0°E~122.0°E)进行的产卵场大面调查数据,结合海洋表层水温、表层盐度、水深及流速等数据开展了海州湾及其邻近海域短吻红舌鳎(Cynoglossus joyneri)产卵场生境适宜性的相关研究。利用提升回归树(boosted regression tree,BRT)模型确定各环境因子的权重,分别采用算数平均法(AMM)和几何平均法(GMM)建立栖息地适宜性指数(habitat suitability index,HSI)模型,并通过交叉验证检验模型的拟合度。结果表明,不同月间海州湾及邻近海域短吻红舌鳎产卵场适宜的环境因子范围相似,但各环境因子所占比重有较大变化。通过交叉验证发现,5月、7月利用几何平均法拟合的栖息地适宜性效果较好,6月、8月算数平均法拟合的效果好。短吻红舌鳎适宜的产卵场分布存在月间变化,5月主要集中在研究海域的南部,6-8月有逐步北移的趋势,且随着产卵群体产卵量的增大,其适宜产卵的生境范围也逐步扩大。本研究表明,栖息地适宜性指数模型能够较好地反映海州湾及其邻近海域短吻红舌鳎的产卵场生境适宜性及其变化情况。  相似文献   

14.
Investigations were conducted on the flathead flouder Hippoglossoides dubius to analyze the environmental conditions around the spawning grounds and the maturational status of spawners in the Sea of Japan off Niigata. In both sexes, larger fish matured earlier than smaller individuals, and participated in breeding from the early part of the spawning season. Males were always the predominant sex found within the spawning ground, likely because males spent longer periods in the spawning grounds than females. This finding further suggests that males matured earlier and maintained sexual activity for longer periods than females within the spawning grounds. Submarine topography and water temperature were concluded to be important factors affecting the formation of the spawning grounds. The spawning ground was located within a restricted area where bathymetric lines curve towards a shallow area. Adult fish usually occur in the Japan Sea Proper Water (<1 °C), but spawners gathered just below the surface mixing layer where water temperature was 5–10°C. Hence, it was thought that the flounder spawn at the upper tolerable water temperature limit (i.e. the shallowest accessible depth) to release their offspring into the surface layer.  相似文献   

15.
The South African chokka squid, Loligo reynaudi, spawns both inshore (≤70 m) and on the mid‐shelf (71–130 m) of the Eastern Agulhas Bank. The fate of these deep‐spawned hatchlings and their potential contribution to recruitment is as yet unknown. Lagrangian ROMS‐IBM (Regional Ocean Modelling System‐Individual‐Based Model) simulations confirm westward transport of inshore and deep‐spawned hatchlings, but also indicate that the potential exists for paralarvae hatched on the Eastern Agulhas Bank deep spawning grounds to be removed from the shelf ecosystem. Using a ROMS‐IBM, this study determined the transport and recruitment success of deep‐spawned hatchlings relative to inshore‐hatched paralarvae. A total of 12 release sites were incorporated into the model, six inshore and six deep‐spawning sites. Paralarval survival was estimated based on timely transport to nursery grounds, adequate retention within the nursery grounds and retention on the Agulhas Bank shelf (<200 m). Paralarval transport and survival were dependent on both spawning location and time of hatching. Results suggest the importance of the south coast as a nursery area for inshore‐hatched paralarvae, and similarly the cold ridge nursery grounds for deep‐hatched paralarvae. Possible relationships between periods of highest recruitment success and spawning peaks were identified for both spawning habitats. Based on the likely autumn increase in deep spawning off the Tsitsikamma coast, and the beneficial currents during this period (as indicated by the model results) it can be concluded that deep spawning may at times contribute significantly to recruitment.  相似文献   

16.
Many demersal marine fish species depend on a dispersive larval stage that connects geographically discrete sub‐populations. Understanding connectivity between these sub‐populations is necessary to determine stock structure, which identifies the appropriate spatial scale for fishery management. Such connectivity is poorly understood for King George whiting (Sillaginodes punctatus; Perciformes) in South Australia's gulf system, even though spawning grounds and nursery areas are adequately defined. In response to declines in commercial catches and estimated biomass, this study aimed to determine the most important spawning grounds and nursery areas to recruitment, and the connectivity between them. A biophysical model was seeded with particles according to the distribution and density of eggs throughout the spawning area in 2017 and 2018. Despite inter‐annual differences in the origins of particles, dispersal pathways and predicted settlement areas remained consistent between years. Predicted settlement was generally highest to nursery areas only short distances from regional spawning grounds, consistent with previous hydrodynamic models. However, the model also predicted that spawning in one region could contribute to recruitment in an adjacent region later in the spawning season, which aligned with the breakdown of thermohaline fronts at the entrance of each gulf. The connectivity between spawning grounds and nursery areas predicted by the model is supported by spatio‐temporal patterns in the otolith chemistry of pre‐flexion larvae and settled juveniles. Consequently, the most parsimonious explanation is that the populations of King George whiting in South Australia's gulf system constitute a single, panmictic stock, which has implications for fishery management.  相似文献   

17.
Stock level of Japanese sardine (Sardinops melanostictus) was high from 1980s to early 1990s and low from late 1990s to 2000s. The warm and cold water masses in the vicinity of the Kuroshio axis from winter to early spring used to be critical for the recruitment in the high‐stock period, because most of the larvae were distributed there. However, the environmental fluctuation might not affect the recruitment in the low‐stock period. Some studies reported that spawning location and spawning season, and hence the larval habitat, differ depending on the stock level. Three points were investigated in this study: (a) how spawning location and spawning season shifted from the late 1990s, (b) confirmation of the distribution area of larvae in the recent low‐stock period and (c) whether the water temperature in the vicinity of the Kuroshio axis was still related to the recruitment in the low‐stock period. The spawning location and spawning season clearly changed after 1995. Consequently, particle tracking experiments suggested that the larvae appeared in the vicinity of the Kuroshio axis from winter to early spring decreased. Nevertheless, only the ambient temperature of larvae that appeared in the vicinity of the Kuroshio axis from winter had a significant negative correlation with an index of the recruitment in the low‐stock period. It is suggested that the warm and cold masses in the vicinity of the Kuroshio axis are critical for the recruitment regardless of the stock level.  相似文献   

18.
The occurrence and density of Pacific saury Cololabis saira larvae and juveniles were examined in relation to environmental factors during the winter spawning season in the Kuroshio Current system, based on samples from extensive surveys off the Pacific coast of Japan in 2003–2012. Dense distributions of larvae and juveniles were observed in areas around and on the offshore side of the Kuroshio axis except during a large Kuroshio meander year (2005). The relationships of larval and juvenile occurrence and density given the occurrence to sea surface temperature (SST), salinity (SSS), and chlorophyll‐a concentration (CHL) were examined by generalized additive models for 10‐mm size classes up to 40 mm. In general, the optimal SST for larval and juvenile occurrence and density given the occurrence was consistently observed at 19–20°C. The patterns were more complex for SSS, but a peak in occurrence was observed at 34.75–34.80. In contrast, there were negative relationships of occurrence and density given the occurrence to CHL. These patterns tended to be consistent among different size classes, although the patterns differed for the smallest size class depending on environmental factors. Synthetically, the window for spawning and larval and juvenile occurrence and density seems to be largely determined by physical factors, in particular temperature. The environmental conditions which larvae and juveniles encounter would be maintained while they are transported. The survival success under the physically favorable but food‐poor conditions of the Kuroshio Current system could be key to their recruitment success.  相似文献   

19.
Growth variability was examined for Pacific saury Cololabis saira larvae under contrasting environments across the Kuroshio axis, based on samples collected during the winter spawning season in 2013 and 2014. The growth rate index (residual of the otolith marginal 3‐day mean increment width from the linear regression on knob length) of larvae was compared among three areas: the inshore side of the Kuroshio axis, the Kuroshio axis, and the offshore side of the Kuroshio axis in relation to sea surface temperature (SST), salinity (SSS) and chlorophyll‐a (CHL) concentration. The larvae were more densely distributed in the Kuroshio axis and offshore areas of higher temperature and salinity and lower chlorophyll‐a concentration than in the inshore areas of lower temperature and salinity and higher chlorophyll‐a concentration. No marked differences in the growth rate index were found among the three areas, even though the larvae in the inshore areas showed slightly higher growth rates in 2013. Despite the broad ranges of environmental factors, no clear relationship between the growth rate index and any environmental factor was detected. The survival potential of Pacific saury larvae was considered to be at least comparable under contrasting environments across the Kuroshio axis. Such a geographical homogeneity is concluded to be attributable to compensable effects of physical and biological factors. We hypothesize that the minority under physically‐unfavorable but biologically‐favorable conditions on the inshore side of the Kuroshio axis could survive equally well as the majority under physically‐favorable but biologically‐unfavorable conditions around the Kuroshio axis and on the offshore side of the Kuroshio axis.  相似文献   

20.
A drastic population change in Japanese sardine (Sardinops melanostictus) has been noted as being related to winter sea surface temperature (SST) in the Kuroshio Extension region. The former studies suggest two possible explanations. One is that temperature itself affects sardine. The other is that SST represents the environmental change of the Kuroshio Extension region and other causes directly affecting sardine. In this study, we found that sardine mortality from post‐larva to age 1 negatively correlated with the winter mixed layer depth (MLD) in the Kuroshio Extension region from 1979 to 1993. During the period of a deep winter mixed layer (during the early 1980s), sardine mortality was low, whereas mortality was high when the winter mixed layer was shallow (during the late 1980s to early 1990s). By using a lower trophic‐level ecosystem model forced by the observed time series of MLD, SST, light intensity and nutrient data, we found that the estimated spring zooplankton density drastically varies from year to year and has a significant negative correlation with sardine mortality. The inter‐annual variation of spring zooplankton density is caused by the winter MLD variation. During the deep winter mixed layer years, a phytoplankton bloom occurs in spring, whereas during the shallow winter mixed layer years, the bloom occurs in winter. The results of our study suggest that the decline in the Japanese sardine population during the late 1980s to early 1990s was due to an insufficient spring food supply in the Kuroshio Extension region where sardine larvae and juvenile are transported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号