首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
水产渔业   2篇
畜牧兽医   3篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Avian bornaviruses (ABVs) were recently discovered as the causative agents of proventricular dilatation disease (PDD). Although molecular epidemiological studies revealed that ABVs exist in Japan, no Japanese isolate has been reported thus far. In this study, we isolated four strains of Psittaciform 1 bornavirus from psittacine birds affected by PDD using QT6 quail cells. To our knowledge, this is the first report to isolate ABVs in Japan and to show that QT6 cells are available for ABV isolation. These isolates and QT6 cells would be powerful tools for elucidating the fundamental biology and pathogenicity of ABVs.  相似文献   
4.
黄瓜(Cucumis sativusL.)是典型的冷敏型植物。对黄瓜来说,冷害是生产上制约其丰产、优质的主要逆境因素之一。为了掌握黄瓜耐冷性遗传规律,加快黄瓜耐冷品种的选育,本研究选取黄瓜耐冷型品系0839和低温敏感型品系B52为亲本杂交得到F1和F2,进行苗期低温鉴定和遗传分析。供试亲本的耐冷性主要受一对显性单基因控制。结合BSA(群体分离分析)和SSR分子标记,获得了与黄瓜耐冷性主效基因连锁的SSR标记。通过F2群体分析,鉴定出与耐冷性基因连锁的分子标记SSR07248,该标记与耐冷性基因间的遗传距离为32.6cM。  相似文献   
5.
We examined the distribution and migration of age-0 jack mackerel in the East China Sea (ECS) and Yellow Sea, based on data from seasonal bottom trawl surveys. Sampling was conducted at 79–161 stations during five cruises in spring (April–June), early summer (May–July), late summer (August–October), autumn (October–December), and winter (January–February). During early summer, jack mackerel (mean 92 mm fork length), which were estimated to have hatched in the southern East China Sea (SECS) during winter, began to occur abundantly, especially along the shelf-break region of the central East China Sea (CECS). In late summer, the distribution center of young fish (mean 126 mm) shifted northward into the shelf region of northern East China Sea (NECS), corresponding with the rise of bottom water temperature and high prey abundance. In winter when the bottom water temperature declined in the shelf region, the distribution center of jack mackerel (mean 144 mm) shifted southward, with high densities occurring in the SECS and CECS. In spring, overwintering jack mackerel that had become age-1 (mean 175 mm) were distributed abundantly along the shelf-break region of the ECS. On the other hand, jack mackerel were only sporadically found, generally at low densities, in the Yellow Sea during all seasons. High densities of jack mackerel were largely restricted to areas of >15°C bottom water temperature during all seasons. Our results indicate that the seasonal shifts of the 15°C isotherm of the bottom layer and the food conditions are significant environmental factors determining the migration of jack mackerel within the ECS.  相似文献   
6.
Horizontal distribution patterns of jack mackerel (Trachurus japonicus) larvae and juveniles were investigated in the East China Sea between 4 February and 30 April 2001. A total of 1549 larvae and juveniles were collected by bongo and neuston nets at 357 stations. The larvae were concentrated in the frontal area between the Kuroshio Current and shelf waters in the upstream region of the Kuroshio. The abundance of small larvae (<3 mm notochord length) was highest in the southern East China Sea (SECS) south of 28°N, suggesting that the principal spawning ground is formed in the SECS from late winter to spring. Jack mackerel also spawned in the northern and central East China Sea (NECS and CECS, respectively), as some small larvae were also collected in these areas. In the SECS, the abundance of small larvae was highest in February and gradually decreased from March to April. The habitat temperature of small larvae in the SECS and CECS (20–26°C) was higher than that in the NECS (15–21°C), suggesting higher growth rates in the SECS and CECS than in the NECS. The juveniles (10‐ to 30‐mm standard length) became abundant in the NECS off the west coast of Kyushu Island and CECS in April and were collected in association with scyphozoans typical of the Kuroshio waters. However, juveniles were rarely collected in the SECS, where the small larvae were concentrated. Considering the current systems in the study area, a large number of the eggs and larvae spawned and hatched in the SECS would be transported northeastward by the Kuroshio and its branches into the jack mackerels’ nursery grounds, such as the shallow waters off the west coast of Kyushu and the Pacific coast of southern Japan.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号