首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stock level of Japanese sardine (Sardinops melanostictus) was high from 1980s to early 1990s and low from late 1990s to 2000s. The warm and cold water masses in the vicinity of the Kuroshio axis from winter to early spring used to be critical for the recruitment in the high‐stock period, because most of the larvae were distributed there. However, the environmental fluctuation might not affect the recruitment in the low‐stock period. Some studies reported that spawning location and spawning season, and hence the larval habitat, differ depending on the stock level. Three points were investigated in this study: (a) how spawning location and spawning season shifted from the late 1990s, (b) confirmation of the distribution area of larvae in the recent low‐stock period and (c) whether the water temperature in the vicinity of the Kuroshio axis was still related to the recruitment in the low‐stock period. The spawning location and spawning season clearly changed after 1995. Consequently, particle tracking experiments suggested that the larvae appeared in the vicinity of the Kuroshio axis from winter to early spring decreased. Nevertheless, only the ambient temperature of larvae that appeared in the vicinity of the Kuroshio axis from winter had a significant negative correlation with an index of the recruitment in the low‐stock period. It is suggested that the warm and cold masses in the vicinity of the Kuroshio axis are critical for the recruitment regardless of the stock level.  相似文献   

2.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献   

3.
We compared a wide range of environmental data with measures of recruitment and stock production for Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus to examine factors potentially responsible for fishery regimes (periods of high or low recruitment and productivity). Environmental factors fall into two groups based on principal component analyses. The first principal component group was determined by the Pacific Decadal Oscillation Index and was dominated by variables associated with the Southern Oscillation Index and Kuroshio Sverdrup transport. The second was led by the Arctic Oscillation and dominated by variables associated with Kuroshio geostrophic transport. Instantaneous surplus production rates (ISPR) and log recruitment residuals (LNRR) changed within several years of environmental regime shifts and then stabilized due, we hypothesize, to rapid changes in carrying capacity and relaxation of density dependent effects. Like ISPR, LNRR appears more useful than fluctuation in commercial catch data for identifying the onset of fishery regime shifts. The extended Ricker models indicate spawning stock biomass and sea surface temperatures (SST) affect recruitment of sardine while spawning stock biomass, SST and sardine biomass affect recruitment of chub mackerel. Environmental conditions were favorable for sardine during 1969–87 and unfavorable during 1951–67 and after 1988. There were apparent shifts from favorable to unfavorable conditions for chub mackerel during 1976–77 and 1985–88, and from unfavorable to favorable during 1969–70 and 1988–92. Environmental effects on recruitment and surplus production are important but fishing effects are also influential. For example, chub mackerel may have shifted into a new favorable fishery regime in 1992 if fishing mortality had been lower. We suggest that managers consider to shift fishing effort in response to the changing stock productivity, and protect strong year classes by which we may detect new favorable regimes.  相似文献   

4.
A paradigm of proportionality between spawning stock biomass (SSB) and total egg production (TEP) has been largely untested at multidecadal scales mainly because of difficulty in estimating annual TEP. Recently, this paradigm was directly tested for sardine (Sardinops melanostictus) and anchovy (Engraulis japonicus) at a multidecadal scale to reveal that SSB–TEP proportionality was partially distorted by intraspecific (sardine) and interspecific (anchovy) density dependence in total egg production per spawner individual (TEPPS) or unit weight (TEPPSW). In the present study, we demonstrate intraspecific density dependence in TEPPS/TEPPSW for chub mackerel (Scomber japonicus) in the Kuroshio Current system, using a proxy for TEPPS/TEPPSW, calculated from snapshot abundance data based on fishery‐independent egg surveys in combination with fishery‐dependent stock assessment data, at a multidecadal scale (38 years). TEPPS/TEPPSW exponentially declined with SSB, indicating a strong intraspecific density dependence in TEPPS/TEPPSW in chub mackerel. The observed phenomenon for chub mackerel was similar to that for sardine. Hence, intraspecific density dependence in TEPPS/TEPPSW may be a phenomenon that is generally applicable for species with a high maximum biomass and large population fluctuations. Lastly, we recommend the application of a TEP‐based framework to studies on recruitment mechanisms of fish.  相似文献   

5.
Winter‐to‐spring variability in sea surface temperature (SST) and mixed layer depth (MLD) around the Kuroshio current system and its relationship to the survival rate (ln [recruit per spawning stock biomass], LNRPS) of Japanese sardine (Sardinops melanostictus) were investigated based on a correlation analysis of data from 1980 to 1995. The data were from a high‐resolution ocean general circulation model using the ‘Kuroshio axis coordinates’, in which the meridional positions are relocated to a latitude relative to the Kuroshio axis at each longitude, rather than the geographically fixed coordinates. A significant positive (negative) correlation between LNRPS and winter MLD (winter–spring SST) was detected near the Kuroshio axis from areas south of Japan (where eggs are spawned) to the Kuroshio Extension (where larvae are transported). This result is in contrast to previous studies using geographically fixed coordinates, which showed a significant correlation predominantly in the area south of the Kuroshio Extension in winter, where at this time few larvae have been found. From the late 1980s to early 1990s, when the survival rate was remarkably low, MLD around the axis was shallow and SST was high. Although MLD and SST show a significant correlation, significant partial correlations were also observed between February MLD and LNRPS when the contribution of SST was excluded, and between March SST and LNRPS when the contribution of MLD was excluded. We presume that MLD shoaling reduced the nutrient supply from deep layers, resulting in less productivity in the spring, and SST warming could have a negative influence on larval growth.  相似文献   

6.
The spawning grounds of the chub mackerel (Scomber japonicus) and spotted mackerel (Scomber australasicus) in the East China Sea were estimated based on catch statistics of the Japanese large- and medium-type purse seine fishery from 1992 to 2006. Biometric data were obtained from specimens caught by purse seiners in the East China Sea from 1998 to 2006. Gonadosomatic index (GSI) at 50% sexual maturity of chub mackerel and spotted mackerel females was 2.5 and 2.6, respectively. Using this criterion for GSI, chub mackerel larger than 275 mm and spotted mackerel larger than 310 mm in fork length were considered to be mature. Mature chub mackerel was observed in the area of 15–22°C sea surface temperature (SST), and mature spotted mackerel was observed in the area of 17–25°C SST. The spawning period of chub mackerel ranged from February to June, and that of spotted mackerel ranged from February to May in the East China Sea. The spawning grounds were estimated from the distributions of catch per unit effort (CPUE) of spawners and SST. As a result, the spawning ground of chub mackerel was estimated to be in the central and southern part of the East China Sea and the area west of Kyushu in February, March, and April, and in the central part of the East China Sea, the area west of Kyushu and Tsushima Straight in May, and in Tsushima Straight and western part of the Sea of Japan in June. The spawning ground of spotted mackerel was estimated to be in the central and southern part of the East China Sea and southern coastal area of Kyushu in February, March, and April, and the central and southern part of the East China Sea and the area west of Kyushu in May.  相似文献   

7.
Recently, based on the histological studies it is suggested that Pacific bluefin tuna (PBF) spawns in the Kuroshio–Oyashio transition, off the Pacific coast of northeastern Japan, in addition to the previously identified two spawning areas of the northwestern Pacific around the Nansei Islands and the Sea of Japan. Distributional surveys for PBF larvae have not been conducted in the Kuroshio–Oyashio transition, and thus, we conducted PBF larval surveys at twenty stations in this area in early August 2018 to obtain evidence for the spawning of PBF. Twelve PBF larvae (3.9–7.2 mm in body length) were collected at six stations where sea surface temperature ranged from 27.2 to 28.2°C. Otolith microstructure analysis indicated that age of these larvae ranged from 4 to 11 days after hatching and the larvae hatched in late July. Growth of the collected larvae was comparable to those in the other two spawning grounds. Therefore, PBF spawns, hatches, and at least survives to the postflexion stage, 11 days after hatching in the Kuroshio–Oyashio transition. This fact potentially has a large impact on recruitment processes of PBF if they survive to recruitment in this third spawning ground.  相似文献   

8.
Horizontal distribution patterns of jack mackerel (Trachurus japonicus) larvae and juveniles were investigated in the East China Sea between 4 February and 30 April 2001. A total of 1549 larvae and juveniles were collected by bongo and neuston nets at 357 stations. The larvae were concentrated in the frontal area between the Kuroshio Current and shelf waters in the upstream region of the Kuroshio. The abundance of small larvae (<3 mm notochord length) was highest in the southern East China Sea (SECS) south of 28°N, suggesting that the principal spawning ground is formed in the SECS from late winter to spring. Jack mackerel also spawned in the northern and central East China Sea (NECS and CECS, respectively), as some small larvae were also collected in these areas. In the SECS, the abundance of small larvae was highest in February and gradually decreased from March to April. The habitat temperature of small larvae in the SECS and CECS (20–26°C) was higher than that in the NECS (15–21°C), suggesting higher growth rates in the SECS and CECS than in the NECS. The juveniles (10‐ to 30‐mm standard length) became abundant in the NECS off the west coast of Kyushu Island and CECS in April and were collected in association with scyphozoans typical of the Kuroshio waters. However, juveniles were rarely collected in the SECS, where the small larvae were concentrated. Considering the current systems in the study area, a large number of the eggs and larvae spawned and hatched in the SECS would be transported northeastward by the Kuroshio and its branches into the jack mackerels’ nursery grounds, such as the shallow waters off the west coast of Kyushu and the Pacific coast of southern Japan.  相似文献   

9.
东海南部鲐鱼生物学特性的初步研究   总被引:1,自引:0,他引:1  
本文对东海南部的鲐鲹鱼类的叉长、体重及性腺成熟度等进行了初步分析,认为1999年5月份东海南部鲐鱼优势叉长组为26~28cm,优势体重组为200~300g;7、8月份优势叉长组为24~26cm,优势体重组为100~200g。蓝圆鲹优势叉长组为20~21cm。2000年7、8月份鲐鱼优势叉长组为24~26cm。1999年鲐鱼叉长组成基本呈正态分布,2000年鲐鱼叉长组成明显存在两个峰值。2000年相同叉长的鲐鱼体重要略低于1999年,认为跟1999年、2000年海洋环境因子变化有关。从相关系数来看,2000年的曲线更贴近实际情况。并认为5月份北上参加产卵洄游的鲐鱼群体、其性腺已开始发育成熟,并沿途产卵。  相似文献   

10.
The occurrence and density of Pacific saury Cololabis saira larvae and juveniles were examined in relation to environmental factors during the winter spawning season in the Kuroshio Current system, based on samples from extensive surveys off the Pacific coast of Japan in 2003–2012. Dense distributions of larvae and juveniles were observed in areas around and on the offshore side of the Kuroshio axis except during a large Kuroshio meander year (2005). The relationships of larval and juvenile occurrence and density given the occurrence to sea surface temperature (SST), salinity (SSS), and chlorophyll‐a concentration (CHL) were examined by generalized additive models for 10‐mm size classes up to 40 mm. In general, the optimal SST for larval and juvenile occurrence and density given the occurrence was consistently observed at 19–20°C. The patterns were more complex for SSS, but a peak in occurrence was observed at 34.75–34.80. In contrast, there were negative relationships of occurrence and density given the occurrence to CHL. These patterns tended to be consistent among different size classes, although the patterns differed for the smallest size class depending on environmental factors. Synthetically, the window for spawning and larval and juvenile occurrence and density seems to be largely determined by physical factors, in particular temperature. The environmental conditions which larvae and juveniles encounter would be maintained while they are transported. The survival success under the physically favorable but food‐poor conditions of the Kuroshio Current system could be key to their recruitment success.  相似文献   

11.
Particle‐tracking experiments were performed to infer the distribution of larvae of the Japanese sardine (Sardinops melanostictus) and to detect effects of transport environment on sardine recruitment, using the output of a high‐resolution ocean general circulation model and observed data of sardine spawning grounds during 1978–2004. By the 60th day following spawning, approximately 50% of the larvae had been transported to the Kuroshio Extension (KE). Whereas the spawning period and grounds changed markedly in relation to the stock level, the proportion of larvae transported to the KE remained relatively constant and no significant correlations were found between sardine recruitment and the transport proportion. Instead, the recruitment was found to be correlated with physical parameters including the mixed layer depth and the sea surface temperature along several major transport trajectories of sardine larvae. The correlations were most significant for the trajectories in the region 0.5° south to 1° north of the Kuroshio axis (defined as the location of velocity maxima at each longitude) and for larvae spawned in February and March during the high stock period (1978–94), and for larvae spawned in March and April during the low stock period (1995–2004).  相似文献   

12.
The sustainable use of marine resources requires understanding the surrounding ecosystem and elucidating mechanisms of variation. However, we still lack a comprehensive understanding of environmental variation in the spawning and nursery grounds of important fisheries species Japanese sardine (Sardinops melanostictus) and mackerels (Scomber japonicus and Scomber australasicus) in the northwest Pacific. Here, we investigate detailed physical, chemical, and biological environment variations in the spawning and nursery grounds along the Kuroshio and Kuroshio Extension area from intensive investigation in spawning season (April) of 2013. We found similar water mass property and copepod community in the egg‐rich Kuroshio area and the larvae‐rich downstream Kuroshio Extension area, indicating environmental variability is small during transportation and development processes. The egg‐rich northern Izu Islands region showed high copepod abundance, although low nutrient and chlorophyll concentrations were observed. Eggs were scarce or absent in the second survey 10 days after abundant eggs were observed in the region, along with differences in water property and copepod community. This indicates that not only the location but also the specific water characteristic and copepod community are a determining factor for spawning. Indicator communities of copepod found in our study (indicator community of transportation process from spawning ground, of non‐spawning ground, and of reproductive area in the Kuroshio Extension area) would be a key factor for recruitment prediction.  相似文献   

13.
北太平洋公海日本鲭资源分布及其渔场环境特征   总被引:1,自引:0,他引:1  
根据2014~2015年两年收集的北太平洋公海围拖网作业的日本鲭(Scomber japonicas,又称鲐鱼)生产月度数据,结合同期卫星遥感反演技术获取的海表温度(SST)、海水叶绿素a(Chl-a)浓度、海流等环境数据,运用渔获量重心法,地统计插值等方法,分析了北太平洋公海鲐鱼的资源分布情况与渔获量重心的时空变化及其与主要环境因子之间的关系。研究表明,鲐鱼渔场季节性差异明显,渔场重心集中分布在39°N~43°N、147°E~154°E范围内。两年渔场重心均呈现先向东北方向移动,自9月开始再向西南方向移动的趋势。GAM模型显示,北太平洋鲐鱼渔场的最适海表温度范围是16~18℃,最适叶绿素a浓度范围是0.3~0.8 mg·m~(-3),空间上集中分布在40°N~41°N、148°E~151°E,海流对鲐鱼渔场形成尤为重要。  相似文献   

14.
1999—2011年东、黄海鲐资源丰度年间变化分析   总被引:4,自引:1,他引:3  
根据1999—2011年我国鲐大型灯光围网渔业数据,使用广义线性模型(generalized linear model,GLM)和广义加性模型(generalized additive model,GAM)估算了影响CPUE的时间(年、月)、空间(经度、纬度)、捕捞性能和环境效应[海表面温度(sea surface temperature,SST)、海表面高度、海表面叶绿素浓度],并以年效应作为资源丰度指数,分析了东、黄海鲐资源丰度的年间变化,东、黄海鲐资源丰度指数的年间变化与产卵场海表面温度以及捕捞强度间的关系。GAM结果表明,时间、空间、捕捞和环境变量对CPUE偏差的解释率为11.69%,其中变量年的解释率最大,占总解释率的38%。结果显示,1999—2011年东、黄海鲐鱼资源丰度指数(abundance index,AI)总体上呈下降趋势,2008年以来更是持续下降,丰度指数由2008年的1.22降至2011年的0.82。东、黄海鲐资源丰度指数年间与产卵场呈正相关,关系式为AI=-3.51+0.23SST(P0.05),这表明较高的产卵场SST对鲐资源量增加有利。过高的渔获量以及我国群众围网渔业渔船数量的快速增长是导致近年来鲐鱼资源下降的重要原因。  相似文献   

15.
We have numerically modeled the advection and diffusion of sardine eggs and larvae to investigate the larval transport processes of Japanese sardine from the spawning grounds by the Kuroshio.
The results indicated that the offshore drift current induced by the winter monsoon and the location of the spawning ground have significant effects on the survival of the Japanese sardine. The contribution of the drift current, the distance of the spawning ground from the Kuroshio axis, and the eddy diffusivity to the larval retention in the coastal area is approximately expressed by the following equation: where R is the retention rate in the coastal area, a the variance of initial distribution of eggs, T the time after the eggs were spawned, – V0 the velocity of the wind-induced offshore current, y0 the distance of the center of the spawning area from the Kuroshio axis, and K the coefficient of horizontal eddy diffusivity.
The year-to-year variation in larval survival rates stimulated by the two-dimensional model are consistent with those estimated previously by using field data of egg and larval abundance during 1978–1988.  相似文献   

16.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

17.
We investigate the effect of strong meteorological perturbations in early spring on the success of mackerel (Scomber scombrus) recruitment in the N/NW Iberian area (southern Bay of Biscay) for the period 1999–2008. In 2000, the year of the most pronounced recruitment failure on record, two consecutive multidisciplinary surveys sampled hydrographic conditions and mackerel eggs, larvae and post‐larvae over the main mackerel spawning grounds of the north and northwest coast of the Iberian Peninsula. Analysis of egg and larval abundance and birthdates based on the otoliths of mackerel juveniles caught between July and October 2000 showed that there were no survivors from the early spring spawns, indicating a massive loss of early spawning effort. Moreover, the abundance of 1‐year‐old mackerel estimated from an acoustic survey carried out in 2001 was the lowest observed within the 1999–2008 time series. This low or null survival from the early spawns in 2000 could be due to the meteorological and oceanographic conditions of that spring, in particular two storm events in April after a relatively calm March. The first storm event from the north caused strong local wind in the southern Bay of Biscay but a weak oceanographic response. The second storm event from the southwest was mainly felt west of Galicia and caused a notable increase in shelf currents and a shift of the hydrographical structure along the shelf. Detailed analysis of strong wind pulses in early spring within the historical recruitment record suggests that strong local turbulence generated by high wind speeds and advection of larvae caused by the enhancement of shelf currents can contribute to reduced recruitment. Our observations indicate that, in 2000, both mechanisms were present.  相似文献   

18.
ABSTRACT:   Recent surveys showed substantial aggregation of larvae of jack mackerel in the southern East China Sea, indicating intensive spawning grounds near Taiwan. A numerical model was applied to investigate transport and survival processes of eggs and larvae of jack mackerel from the spawning area to the nurseries. The results show that: (i) the distributions of larvae simulated by the model agreed well with those obtained by field survey; (ii) the stock of jack mackerel in the Sea of Japan is composed of both groups from north of Taiwan and from the western coast of Kyushu. It takes more than two months for the former to reach the Sea of Japan, while it is within 40 days for the latter; and (iii) large proportions of the eggs and larvae spawned off the north of Taiwan are transported rapidly to the Pacific side of Kyushu by the Kuroshio Current, and the rest slowly to the east or north-east along the continental slope in the East China Sea. In contrast to the larval flux, survivors are more abundant in the northern East China Sea than in the Pacific Ocean, indicating that survival in the northern East China Sea would determine the jack mackerel stock in Japan.  相似文献   

19.
Larval Japanese eel (leptocephali) are passively transported from their spawning sites of the North Equatorial Current to the Kuroshio and its branch waters for 4–6 months before reaching the East Asian coasts. The larvae mainly stay within water depths between 50–150 m. The dispersal dynamics of larvae thus should reflect the sub‐surface oceanic currents on the East Asia continental shelf. An analysis of Japanese glass eel catch data in East Asian countries during 1985 to 2009, and for Taiwan from 1968 to 2008, indicates that the overall annual catch is generally correlated across countries of East Asia, and between north and west areas of Taiwan. The Kuroshio and its branch waters disperse glass eels throughout East Asian habitats, and the glass eel distribution matches the flow directionality of oceanic currents. Recruitment in western Taiwan occurs with a sequential southwestern to northwestern direction, suggesting that the Taiwan Strait Current penetrates the western coast of Taiwan in the sub‐surface layer in winter. The monthly averaged sub‐surface 50 m circulation pattern in the vicinity of Taiwan and modeled tracer experiments also support the northward winter sub‐surface current in Taiwan Strait. These results suggest that the larval Japanese eel could serve as a valuable bio‐tracer of sub‐surface currents, and the earlier recruitment dynamics of Japanese glass eels in Taiwan could be a good predictor for the subsequent catch in other East Asia areas.  相似文献   

20.
Growth variability was examined for Pacific saury Cololabis saira larvae under contrasting environments across the Kuroshio axis, based on samples collected during the winter spawning season in 2013 and 2014. The growth rate index (residual of the otolith marginal 3‐day mean increment width from the linear regression on knob length) of larvae was compared among three areas: the inshore side of the Kuroshio axis, the Kuroshio axis, and the offshore side of the Kuroshio axis in relation to sea surface temperature (SST), salinity (SSS) and chlorophyll‐a (CHL) concentration. The larvae were more densely distributed in the Kuroshio axis and offshore areas of higher temperature and salinity and lower chlorophyll‐a concentration than in the inshore areas of lower temperature and salinity and higher chlorophyll‐a concentration. No marked differences in the growth rate index were found among the three areas, even though the larvae in the inshore areas showed slightly higher growth rates in 2013. Despite the broad ranges of environmental factors, no clear relationship between the growth rate index and any environmental factor was detected. The survival potential of Pacific saury larvae was considered to be at least comparable under contrasting environments across the Kuroshio axis. Such a geographical homogeneity is concluded to be attributable to compensable effects of physical and biological factors. We hypothesize that the minority under physically‐unfavorable but biologically‐favorable conditions on the inshore side of the Kuroshio axis could survive equally well as the majority under physically‐favorable but biologically‐unfavorable conditions around the Kuroshio axis and on the offshore side of the Kuroshio axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号