首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用模拟实验与现场实验相结合的方法,通过添加3种微生态制剂及碳水化合物作为碳源,研究了其在生物絮团形成与水质调节中的作用,并分析了其对水中无机氮含量、悬浮物、细菌总数及幼参生长的影响,为阐明生物絮团在刺参工厂化苗种培育中的生态环境调控作用提供依据。结果表明,亚硝态氮易于在培育池水体中累积,可高达0.25 mg/L;添加芽孢杆菌后,水中总悬浮物含量和细菌总数均为最高值,且未检测到弧菌和大肠菌群;第20天,仅添加蔗糖组幼参增重与特定生长率均明显高于其他复合碳源组和对照组(P0.05),分别为44.34 g和2.19%/d;而添加蔗糖和芽孢杆菌组增重与特定生长率均明显高于其他处理组和对照组(P0.05),分别为66.60 g和3.01%/d;复合碳源组幼参增重与特定生长率随着玉米淀粉含量增加而逐渐降低,但与对照差异均不显著(P0.05)。结果显示,以蔗糖为碳源,添加芽孢杆菌形成的生物絮团不仅可以改善水体水质和微生态结构,还可以明显促进幼参的生长。  相似文献   

2.
为提高凡纳滨对虾种苗生产的生态化水平,分别以蔗糖、葡萄糖、淀粉为添加碳源,添加量为投饵量的50%,同时添加地衣芽孢杆菌,在1 000 L的水体中进行凡纳滨对虾生物絮团技术育苗实验。结果表明添加碳源组絮团含量明显高于对照组(不添加碳源和芽孢杆菌),且蔗糖组絮团的形成比淀粉组和葡萄糖组早;蔗糖组和葡萄糖组的氨氮、亚硝酸盐含量均显著低于对照组和淀粉组,其亚硝酸盐峰值浓度分别比对照组降低25.4%和31.4%,且未换水即自行下降;添加碳源各组絮团的粗蛋白、粗脂肪含量均显著高于对照组,粗蛋白含量最高的蔗糖组达到32.6%。仔虾幼体P14时,葡萄糖组和蔗糖组的仔虾体长分别比对照组增长22.8%和19.2%(P0.01),差异极显著。表明在凡纳滨对虾生物絮团技术育苗中,蔗糖和葡萄糖作为添加碳源是合适的。  相似文献   

3.
为研究凡纳滨对虾育苗标粗阶段生物絮团形成所需要的适合碳源,设计3种不同碳源添加组(葡萄糖组、淀粉组和蔗糖组),每个处理组设置3个重复,实验期20 d,以分析不同碳源添加后对水体生物絮团的形成、营养成分、细菌群落结构及水质指标的影响。结果显示,在碳源添加量均为投喂量的80%时,形成的生物絮团可有效调节水质,降低水体中的氨氮和亚硝酸盐氮水平。3个碳源添加组水样中氨氮、亚硝酸盐氮和硝酸盐氮浓度显著低于对照组,淀粉组水样中氨氮、亚硝酸盐氮和硝酸盐氮浓度显著高于葡萄糖组和蔗糖组;最终对虾存活率统计结果显示,葡萄糖组、淀粉组、蔗糖组和对照组分别为72.9%、54.2%、69.8%和44.3%;淀粉组的生物絮团沉降体积(BFV)显著低于葡萄糖组,蔗糖组BFV最高,在13~15 d后3组均趋于稳定;葡萄糖组和蔗糖组的粗蛋白含量均显著高于淀粉组,葡萄糖组和蔗糖组则差异不显著;葡萄糖组和蔗糖组生物絮团中组氨酸、精氨酸、蛋氨酸等必需氨基酸和天冬氨酸、谷氨酸、丙氨酸等非必需氨基酸含量都显著高于淀粉组;葡萄糖组、淀粉组和蔗糖组的必需氨基酸指数(EAAI)值分别为0.93、0.89和0.92。3种类型生物絮团在门级水平的细菌群落共有18余种,其中变形菌门和拟杆菌门在各组占有比例均最高,淀粉组拟杆菌门含量显著高于其他2组,蔗糖组浮霉菌门和放线菌门含量显著高于葡萄糖组和淀粉组。研究表明,添加不同碳源可影响水体生物絮团的形成、营养成分、细菌群落结构和多样性,不同程度地改善水质。以必须氨基酸指数及存活率为评价指标,则葡萄糖和蔗糖都是凡纳滨对虾育苗标粗水体中适宜的碳源选择。  相似文献   

4.
水温18.2-21.9 ℃和盐度30-32下,在室内200 L塑料水槽中添加不同的碳源(葡萄糖、蔗糖、玉米淀粉、地瓜粉等)形成生物絮团,养殖体重(0.9±0.1 )g/只的仿刺参(Apostichopus japonicus )幼参2个月,探讨水体中的生物絮团对其体内主要消化酶和免疫性酶活性的影响。结果表明,养殖水体中添加淀粉、蔗糖有利于提高幼参体内消化酶(淀粉酶、蛋白酶)的活性。复合碳源组(葡萄糖:果糖:蔗糖:玉米淀粉:地瓜粉=0:3:4:2:1)幼参胃蛋白酶活性(10.63 U/mg prot)显著高于其它组,复合碳源更利于提高幼参胃蛋白酶活性。复合碳源组(葡萄糖:果糖:蔗糖:玉米淀粉:地瓜粉=1:2:4:1:2),幼参体壁中ALP活性最高,为2.66 U/mg;而玉米淀粉组中,幼参体液中SOD活性(204.66 U/mg )显著高于其他各试验组(P < 0.05)。添加碳源后制得的生物絮团可以提高幼参机体的免疫功能。  相似文献   

5.
为确定斑节对虾(Penaeus monodon)养殖系统中生物絮团形成所需的最适碳源及添加量,试验选取葡萄糖、蔗糖、糖蜜3种碳源按碳(C)与氮(N)比(C/ N)为20:1添加,再按日投饲量的0%、25%、50%、75%和100%添加蔗糖,以期获得其最适添加量。结果显示,添加3种不同糖作为碳源均可以显著提高斑节对虾的特定生长率(P ﹤0.05),而添加蔗糖可以显著提高斑节对虾的成活率(P ﹤0.05);与其他组相比,添加75%的蔗糖组可以显著提高斑节对虾的特定生长率和成活率(P ﹤0.05),促进异养细菌和浮游植物的繁殖,水体氨氮(NH4-N)、亚硝酸氮(NO2-N)等有害物质的浓度较低,过多的添加蔗糖却会起到反作用。结果表明添加75%的蔗糖最适合生物絮团在斑节对虾养殖系统中形成,并促进斑节对虾的生长。  相似文献   

6.
生物絮团对中华锯齿米虾生长及水质的影响   总被引:1,自引:0,他引:1  
实验以枯草芽孢杆菌和光合细菌为研究对象,研究了生物絮团对中华锯齿米虾养殖水体酸碱度、氨氮、亚硝酸氮、COD等水质指标的调节及其在促进米虾生长方面的作用。结果显示,添加了生物絮团的实验组,比对照组养殖水体的亚硝酸氮含量降低54%,COD水平降低39%,氨氮含量降低35%,pH值稳定保持在适宜的水平,中华锯齿米虾的存活率和增重率也有显著提高。结果表明,生物絮团的使用,能够有效调节水质,促进中华锯齿米虾的生长。  相似文献   

7.
本试验研究了饲料中添加芽孢杆菌对草鱼生长、肠粘膜抗氧化功能及养殖水体水质的影响。选取平均体重为(51.0±2.3)g的健康草鱼300尾,随机分成3组(对照组、处理组1和处理组2),每组3个重复,每个重复50尾鱼。其中对照组饲喂基础日粮,处理组1和2分别饲喂含复合芽孢杆菌(105 cfu/克饲料,枯草芽孢杆菌和解淀粉芽孢杆菌以1:1比例混合)和枯草芽孢杆菌(105 cfu/克饲料)的基础日粮。试验期为45d。结果表明,饲料中添加芽孢杆菌对养殖水体pH和硝酸盐氮含量无显著影响,但显著降低了从第21d到试验结束期间水体中亚硝酸盐氮的含量(处理组1第35d除外)。芽孢杆菌的添加同时显著降低草鱼的死亡率(P<0.05),并提高了草鱼的增重率和特定生长率。与对照组相比,处理组1和2草鱼的增重率分别提高了52.93%(P<0.01)和21.78%(P<0.05),特定生长率分别提高了44.44%(P<0.01)和16.67%(P<0.05);而且处理组1草鱼增重率和特定生长率分别比处理组2提高了25.58%(P<0.01)和23.81%(P<0.01)。肠粘膜抗氧化活性研究表明,与对照组相比,饲料中添加芽孢杆菌能提高草鱼肠粘膜超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性。以上结果提示,饲料中添加芽孢杆菌可以改善养殖水质和草鱼肠粘膜抗氧化功能,并显著促进草鱼生长并降低死亡率。  相似文献   

8.
为探究添加不同碳源物质所形成的生物絮团对团头鲂鱼种生长、消化酶以及抗氧化酶活性的影响,设计5个不同碳源物质的添加组[淀粉组、葡萄糖组、蔗糖组、甜蜜素组和复合碳源组(葡萄糖∶淀粉=1∶1)],其中淀粉组为对照组,每个碳源添加组设置3个重复。每个水泥池投放团头鲂鱼种20尾,初始体质量为(36.74±0.82)g,实验期为8周。结果发现:(1)形成的生物絮团可以有效地调节水质,降低水体中的氨氮和亚硝酸盐氮水平;(2)与对照组相比,葡萄糖组团头鲂鱼种的鱼体末质量显著提高23.1%,增重率显著提高39.4%,特定生长率也显著提高23.6%,饲料系数显著降低28.1%,但存活率并没有显著差异;(3)肠道组织光镜观察表明,团头鲂鱼种肠道单层柱状上皮附近存在未消化的生物絮团;(4)添加不同碳源形成的生物絮团对团头鲂鱼种体成分没有显著的影响;(5)复合碳源组的肠道总蛋白酶的活性(3.64±0.53)U/mg显著高于对照组275.3%,淀粉酶活性显著高于对照组(淀粉组)289.2%、葡萄糖组166.7%和蔗糖组860%;(6)葡萄糖组的团头鲂超氧化物歧化酶(SOD)活性为(238.67±13.63)U/mg,显著高于对照组的SOD活性72.5%,葡萄糖组团头鲂的过氧化氢酶(CAT)酶活性为(192.31±17.06)U/mg,显著高于对照组的CAT活性40.4%,与对照组的丙二醛(MDA)水平相比,葡萄糖组、蔗糖组、甜蜜素组和复合碳源组分别显著降低了69.0%、59.7%、38%.0和48.8%。研究表明,水体中添加葡萄糖为碳源能显著提高团头鲂鱼种的生长性能和抗氧化水平,并有效改善水质。  相似文献   

9.
为探究枯草芽孢杆菌(Bacillus subtilis)培育生物絮团对浮游生物的影响,以枯草芽孢杆菌作为试验菌种,以养殖池塘水为试验用水,在有机玻璃水族箱(100 cm×60 cm×50 cm)中进行为期40 d的生物絮团培育试验。试验以添加葡萄糖为处理组I,同时添加枯草芽孢杆菌和葡萄糖为处理II组,仅添加枯草芽孢杆菌为处理III组,对照组不添加任何物质。试验过程中每5 d对各组水体取样,对形成的絮团物质进行显微观察,同时对各组水体中浮游生物进行定性和定量分析。结果表明,本试验条件下,处理I组和处理II组在第15天左右形成成熟生物絮团,生物絮团形成前期(试验开始至第15天),生物絮团组(处理I组和处理II组)水体中浮游植物丰度显著高于处理III组和对照组,而絮团形成后期(第15~40天),生物絮团组水体中蓝藻门的微囊藻属(Microcystis)、鞘丝藻属(Lyngbya)和绿藻门的扁藻属(Platymonas)、盘藻属(Gonium)和团藻属(Volvax)的丰度显著低于处理III组和对照组,表明生物絮团的形成前期对浮游植物有明显促作用,生物絮团形成后期对蓝藻门中的微囊藻属、鞘丝藻属和绿藻门的扁藻属、盘藻属和团藻属有明显抑制效果;生物絮团形成后期,生物絮团组水体中轮虫、枝角类和桡足类浮游动物丰度显著高于处理对照III组和对照组,表明生物絮团对轮虫、枝角类和桡足类有明显促进作用。  相似文献   

10.
分别向凡纳滨对虾(Litopenaeus vannamei)养殖水体中添加芽孢杆菌(处理A)、芽孢杆菌+粉碎甘蔗渣(处理B)、芽孢杆菌+粉碎-蒸煮甘蔗渣(处理c),检测养殖环境中的氨氮、亚硝态氮和硝态氮含量、水体中总菌数、水体中絮团含量和对虾生长指标,评估添加甘蔗渣和芽孢杆菌对对虾生长及养殖环境的影响。60天的养殖结果表明,养殖前期处理组B、处理组c的氨氮(TAN)浓度显著低于处理组A(P〈0.05);甘蔗渣和芽孢杆菌的添加能够提高水体中生物絮团含量,养殖10天以后,处理组B和处理组C的生物絮团含量分别维持在6-3~20 ml/L、8.3~30 ml/L,各时期都显著高于处理组A(维持在2.7~8.3 ml/L)(P〈0.05);处理组B、处理组c收获时对虾平均体重分别为8.56±0.21 g、8.84±0.26 g,显著大于处理组A(7.66±0.40 g)(P〈0.05)。  相似文献   

11.
分别采用鲜孔石莼(Ulva pertusa)、鲜角叉菜(Chondrus ocellatus)、鲜裙带菜(Undaria pinnatifida)磨碎液及其混合液与25%海泥制成四种不同配合饵料,对2.25g±0.02g的幼刺参生长和成活进行了研究。结果表明:实验60d后,投喂鲜孔石莼的幼刺体重增长达到(4.86±0.54)g,特定生长率表现出最大值,为1.36%±0.13%/d,相比对照组(3.42g±0.62g,0.82%±0.34%/d)增长显著(P<0.05),鲜角叉菜次之,体重和特定生长率分别为4.37g±0.31g和1.22%±0.22%/d,两者差异不显著(P>0.05)。幼刺参摄食鲜孔石莼、鲜角叉菜、鲜裙带菜和混合藻液其存活率分别为62.2%±0.2%、58.7%±0.3%、55.3%±0.9%、56.3%±0.7%,与对照组(50.6%±1.3%)之间差异显著(P<0.05)。研究结果显示,投喂鲜孔石莼对海上网箱幼刺参的生长和成活效果最好。因此,在刺参海上网箱养殖阶段添加鲜孔石莼是经济可行的。  相似文献   

12.
在饲料中添加海星棘皮,与两组商品饲料分别投喂体重为5.0–6.7 g的仿刺参(Apostichopus japonicus Selenka),进行60 d养殖试验,研究其对仿刺参平均增重率(AWGR)、特定生长率(SGR)、饲料系数(FCR)、摄食率(FR)和蛋白表观消化率(APD)的影响。结果显示,各组仿刺参生长良好,成活率无显著差异(P>0.05);60 d时,各组仿刺参的AWGR和SGR变化趋势相同,由高到低依次为市售2组、海星组、市售1组;海星饲料组仿刺参的FCR最低,与其他两组间差异不显著(P>0.05);海星饲料组与市售1组的FR间差异不显著(P>0.05),与市售2组FR间有显著差异(P<0.05);海星饲料组仿刺参的饲料转化率(FE)明显高于其他两组(P<0.05);海星饲料组仿刺参的APD最高,为67.28%,与市售1组的APD差异显著(P<0.05)。研究表明,添加海星棘皮可以较好地促进仿刺参的生长和提高饲料的利用,可添加到仿刺参幼参饲料中用作饲料源。  相似文献   

13.
在水温9℃~13℃下,将平均体质量0.745±0.3 g的仿刺参(Apostichopus japonicus Selenka)随机投放到50cm×40cm×30cm的塑料水槽内,每箱10头,共分为五组,每组3个平行,采用不同间隔时间投喂每kg添加0.5 mg蛋氨酸硒的饲料:第1、2、3、4组分别间隔0、5、10和15...  相似文献   

14.
在水温9.0-16.0℃下,将体质量0.5g±0.2g的仿刺参(Apostichopus japonicus Selenka)放养在放置了混凝土制的中空型(A类)、楼层型(B类)和井字型(C类)附着基的塑料水槽(45cm×31cm×30cm)中,投喂配合饲料,采用每周清洗一次附着基(A’组、B组’和C’组)和不清洗附着基(A组、B组和C组)的方法饲养80d,研究了3种形状附着基对仿刺参生长的影响。结果表明,清洗对仿刺参特殊增长率有极显著影响(P〈0.01),清洗与附着基形状的交互作用对仿刺参特殊增长率有显著影响(P〈0.05)。清洗的楼层型附着基组(B’组)特殊增长率最高,不清洗的楼层型(B组)最低,两者之间差异显著。饲养的前60d,放置不同形状附着基的水槽水中亚硝酸、氨氮和COD等的含量低而稳,各组间差异不显著。但后期各组上述水化学指标急剧上升;定期清洗的水中均低于不清洗组。放置附着基而不清洗的水槽中的仿刺参体腔液中超氧化物歧化酶(SOD)、酸性磷酸酶(ACP)和溶菌酶(LYS)的活性分别比冲洗的水槽中高32.28%、9.17%和5.71%。A组仿刺参体腔液中SOD的活性与A’组差异极显著(P〈0.01),B组与B’组差异显著(P〈0.05),C组与C’差异极显著(P〈0.01)。文中从生态作用和空间面积比例等讨论了附着基结构与功能对仿刺参生长影响的机理。  相似文献   

15.
在水温9℃~13℃下,将平均体质量0.745±0.3 g的仿刺参(Apostichopus japonicus Selenka)随机投放到50cm×40cm×30cm的塑料水槽内,每箱10头,共分为五组,每组3个平行,采用不同间隔时间投喂每kg添加0.5 mg蛋氨酸硒的饲料:第1、2、3、4组分别间隔0、5、10和15 d投喂一次,第5组投喂不含硒的饲料(对照组)。60d的饲养结果表明:间歇投喂含硒饲料各组仿刺参的成活率和特定生长率差异不显著,但都明显高于对照组;每隔5 d投喂一次含硒饲料的刺参体腔液中SOD活力(78.34U/ml)显著高于其他组(P〈0.05);谷胱甘肽的浓度(2.87×10-5mol/L)对照组差异不显著,但显著高于其它组(P〈0.05);连续投喂含硒饲料的仿刺参体内的酸、碱磷酸酶活性(2.42U/ml,5.76U/ml)显著高于其他组(P〈0.05)。建议在生产中宜每日或最多间隔5 d投喂含硒饲料。  相似文献   

16.
以初始平均体重为(12.5±2.0)g的刺参为研究对象,在室内玻璃钢桶内进行了56 d饲喂实验。以基础饲料为对照组(A),研究基础饲料中分别添加0.5%(B)、1.25%(C)、2.0%(D)的裂壶藻对刺参生长、免疫及消化酶的影响。结果表明,C组、D组可显著提高刺参的特定生长率(SGR)(P0.05)。C组和D组刺参体腔液碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LZM)、超氧化物歧化酶(SOD)、吞噬活性、肠道淀粉酶均显著高于对照组(P0.05)。C组的体腔液呼吸爆发活性和肠道蛋白酶活性显著高于对照组(P0.05)。B组的AKP、LZM、肠道淀粉酶活性均显著高于对照组(P0.05)。饲料中添加裂壶藻各处理组刺参成活率均为100%。实验结果表明,1.25%-2.0%裂壶藻添加量可显著提高刺参的生长速度和免疫酶活性;饲料中添加1.25%裂壶藻能够显著增加刺参肠道的蛋白酶、淀粉酶的消化活性:裂壶藻有作为刺参营养添加剂的应用前景。  相似文献   

17.
在水温9.0~16.0℃下,进行了2个室内受控实验,研究不同强度和颜色的光对仿刺参幼参(Apostichopus japonicus Selenka()体质量0.10~0.17 g)聚集行为的影响。实验1:将仿刺参幼参放在覆以黑色塑料布的白色塑料水槽(50 cm×40 cm×30 cm)中,在距水槽7 cm的一端分别放置15 W、25 W、40 W、60 W和100 W的白炽灯泡,连续照射24 h,每隔2 h观察、记录仿刺参在水槽中不同区域的分布。实验2:在微流水的循环水槽中央的大方槽中放50头大小均一的健康仿刺参幼参,水槽底部有1.5 cm高的空隙与两侧的6个小方槽相通。5个小方槽中上方分别放红、黄、绿、蓝、白色的节能灯,波长分别为639、587、548和435 nm,另一个小方槽中无光照作对照。在循环水槽上方加盖不透光的厚纸板,12 h光照+12 h黑暗,每隔3 h观察记录仿刺参在各小方槽中的数量,4 d为一个实验周期,重复8次。结果表明:在实验光照强度下,仿刺参均在距光源最远的Ⅳ区域中数目较多,其中40 W(光照强度为12~19 lx)时聚集的最多。仿刺参在红色光区的聚集数目明显高于其它光色区,其中红光与蓝光、白光差异极显著(P〈0.01),红光与黑暗对照差异显著(P〈0.05),白光与绿光差异显著(P〈0.05)。实验发现,红色光为仿刺参敏感的光色。  相似文献   

18.
利用单因素设计,以初始体重为4.5~4.8g的刺参Apostichopus japonicus为研究对象,分别配制以鱼粉、马尾藻和酒糟等为主要成分的配合饲料(蛋白含量为14.7%、17.7%、19.1%及21.5%)喂养刺参70d。实验表明,实验刺参的增重率和对配合饲料的消化率随着饲料中蛋白含量的增加而增加。配合饲料中粗蛋白的含量为21.49%时,试验幼参的增重率及蛋白质消化率达到最大。另一组试验对5种含有不同种类和数量的氨基酸配合饲料进行了饲喂对比试验,实验进行了40d。结果表明,饲喂富含甘氨酸、蛋氨酸、赖氨酸和精氨酸饲料的刺参增重率最高。  相似文献   

19.
几种饲料原料对刺参幼参生长和体成分的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
研究了不同饲料原料对刺参Apostichopus japonicus(Selenka)幼参生长和体成分的影响.实验采用鱼粉、鼠尾藻Sargassum thunbergii Kuntze、浒苔Enteromorpha prolifera、海带Laminaria japonica和海泥5种主要原料配制的饲料投喂体长为4.18±0.23cm、体重为5.99±0.26g的刺参幼参,进行了为期80d的养殖实验.实验结束时,投喂鼠尾藻饲料、浒苔饲料和动物性饲料的刺参特定生长率(SGR)分别为95.36%/d、92.29%/d和84.87%/d.这三者之间无显著差异,但生长效果要好于投喂海带饲料和海泥饲料的刺参.实验结果表明,在特定的室内养殖条件下,虽然刺参能够更好地利用植物性蛋白,但是可以将动物性蛋白作为刺参的辅助性饲料成分,配制出营养更全面的配合饲料;浒苔作为刺参幼参的养殖饲料原料是完全可行的;海带粗加工产品不适于用做刺参饲料的主要成分.  相似文献   

20.
通过设置不同的盐度梯度(20‰,25‰,30‰,35‰),对黄河三角洲地区养殖的刺参稚参在不同盐度下的生长状况进行了研究。结果表明,黄河三角洲地区刺参生长最适盐度范围在25‰~30‰。过高或过低的盐度对刺参生长产生影响的原因可能是:第一,在呼吸树的作用下,耗氧率增加以调节渗透压,消耗了能量,影响了刺参的生长;第二,刺参体内环境的改变影响了消化酶活性,进而影响刺参的摄食和消化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号