首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为满足轮式收获机地头收获路径跟踪精度要求,本研究提出了一种基于粒子群改进的带有预测特性的纯追踪路径跟踪算法。建立了轮式收获机运动学模型,推导了基于轮式收获机运动学模型的纯追踪路径跟踪算法。以收获机航向误差和横向误差为基础,构建了带有预测特性的隶属度函数,采用权重系数自适应方法,通过粒子群优化(PSO)算法,实现了实时动态确定最优前视距离。以玉米收获机为试验平台,开展了直线路径跟踪路面试验与“8”字曲线路径跟踪路面实验,试验结果表明:在1.5m/s速度时,直线路径跟踪的最大横向误差为4.39cm,最大航向误差为2.31°。在1m/s时,曲线路径跟踪的最大横向误差为5.24cm,最大航向误差为2.41°。试验结果表明本文设计改进的路径跟踪算法对直线路径及曲线路径都具有良好的路径跟踪效果,满足轮式收获机田间作业要求。  相似文献   

2.
农用开放式智能移动平台研制   总被引:2,自引:0,他引:2  
研制了一种作为农田智能化作业前提和基础的农用履带式智能移动平台。该平台主要包括机械系统和控制系统。移动平台能够实现田间自主导航,且具有一定的开放性,可满足农田多种智能化作业的要求。用VC++6.0编写了自主导航控制程序,开发了人机交互界面。样机在江苏省丰县果园进行了导航实验。结果表明:在组合导航模式下,该智能移动平台自主导航性能稳定,直线路径最大跟踪误差为0.05 m,曲线路径最大跟踪误差为0.11 m。  相似文献   

3.
针对崎岖山地环境下自走式履带机器人自走姿态波动大、跟踪精度低等问题,研究了三维崎岖路面履带机器人控制方法。通过分析机器人在二维平整路面与三维崎岖路面的运动学模型,建立了降维运动学几何模型;设计了一种基于降维变系数的滑模控制方法,实现三维崎岖路面履带机器人的运动控制,并进行了平整路面与崎岖路面的路径跟踪仿真与试验。仿真结果表明,平整路面仿真中,行驶方向误差逐渐减小并趋近于0,侧向位置误差在±0. 2 m内波动,并可在1 s内完成姿态调整;崎岖路面仿真中,三轴位置误差均控制在±0. 1 m范围内,同样可在1 s内完成姿态调整。路径跟踪田间试验结果表明,平整路面和崎岖路面机器人跟踪稳定后的横向误差分别为-2. 9~8. 8 cm、-14. 3~21. 5 cm,姿态误差分别控制在±2°、±5°内,能够满足实际跟踪需求。  相似文献   

4.
扰动下农用运输车辆路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用运输车辆路径跟踪的鲁棒稳定性,基于线性模型预测控制结合农用运输车辆特点设计了路径跟踪控制器。该方法首先将农用运输车辆的运动学模型进行离散化求解,推出误差模型作为控制器预测方程,为使农用运输车能够克服在田间行驶时的各种干扰,通过构建李雅普诺夫函数重点分析了该模型的鲁棒稳定性,得到控制周期约束条件,然后建立目标函数并引入松弛因子,最后把预测模型代入目标函数进行优化求解,重复以上过程,实现优化控制。Matlab仿真表明:当前轮转角扰动不大于15°及横向扰动不大于1.5m时,控制器可以迅速起到调节作用,使车辆快速回到参考轨迹上行驶。对应的场地试验结果表明:试验小车以2m/s的速度跟踪参考路径时,直线路段跟踪效果良好,最大横向偏差为10.57cm,均值为8.49cm;添加扰动路段的跟踪偏差较大,最大横向偏差为23.89cm,最大纵向偏差为62.53cm,但在控制器的控制作用下可以实现对路径的有效跟踪。由此可见,该控制器在速度小于等于2m/s的情况下,可以满足农用运输车辆对路径跟踪的精度与鲁棒稳定性要求。  相似文献   

5.
基于非线性模型的农用车路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用车辆路径跟踪性能,提出一种基于非线性模型预测的路径跟踪控制方法。该方法将路径跟踪问题转换为求解满足速度、转角约束的最优值问题。首先将农用车的非线性运动学模型进行离散化推出递推模型,作为控制器的预测方程;然后建立以农用车运动学模型控制量为状态量的目标函数,设计各个变量的约束条件,把预测方程代入目标函数将其转化为基于递推序列的二次规划法响应问题,在此基础上进行梯度计算解决非线性的约束优化;最后,利用实时反馈与滚动优化实现控制器的闭环校正;重复以上过程,完成预测控制。Matlab仿真结果表明:非线性模型预测控制器能够实现对所设计路径的有效跟踪。相对应的场地试验结果表明:试验小车以2 m/s的速度跟踪参考路径时,最大横向偏差为-4.28 cm;3 m/s跟踪参考路径时,最大纵向偏差为-6.61 cm,可以满足农用车辆对于路径跟踪的精度要求。与线性模型预测控制器的对比试验表明:以3 m/s的速度跟踪圆形路径时,设计的控制器跟踪横向偏差降低了36.8%,纵向偏差降低了32.98%。  相似文献   

6.
以四足轮式采摘机器人为研究载体,将采集的果园图像经过灰度化、阈值分割、几何校正、比例尺寸划分等处理,然后进行栅格化;在此基础上,对采摘机器人在作业时的路径进行全局规划,通过蚁群算法寻找出一条无障碍、短距离的行驶路线;同时,结合运动学模型和PID闭环等现代控制理论,将得到的路径信息转化为控制信号,输出占空比变化的PWM波,从而控制电机运转,使得采摘机器人以规定的速度跟踪已规划好的行驶路线;最后,将此理论以嵌入式方式进行软硬件开发,设计出一款路径规划-跟踪控制系统。实验结果表明,利用路径规划-跟踪控制系统的采摘机器人按规划的路径到达目标点的平均概率为94.5%,能够准确、有效地辅助采摘机器人进行采摘作业。  相似文献   

7.
变速条件下农业机械路径跟踪稳定控制方法   总被引:1,自引:0,他引:1  
为提高农业机械(农机)路径跟踪控制在不同速度条件下的稳定性和鲁棒性,提出了基于链式系统模型和小范围稳定性分析优化的直线路径跟踪控制方法。首先,根据几何约束建立农机非线性运动学模型,并基于链式系统模型将其转换为线性链式系统,进而对系统的误差项进行线性组合,得到农机路径跟踪控制方法;然后,基于控制方法在平衡位置小范围的稳定性分析,对控制方法进行优化,使得农机路径跟踪控制在平衡位置小范围的稳定性与行驶速度无关;最后,以水稻穴直播机为实验平台开展了直线跟踪对比实验和农机作业实验。结果表明,相比于PID控制方法,本文控制方法在3种不同速度下均能保持直线跟踪控制的稳定性,并且具有较高的控制精度。同时,本文路径跟踪控制方法的稳定性与行驶速度无关,农机作业的行驶速度在0. 4~2. 0 m/s范围内均能实现稳定控制,平均绝对误差均值为0. 047 m,最大绝对误差为0. 128 m。  相似文献   

8.
为适应水田行走和不同垄宽等复杂的农艺条件,设计了一种轮距宽度可调的高地隙四驱农田信息采集机器人。利用SolidWorks对整体结构进行设计分析和零部件选型,设计了基于GNSS和INS的组合导航与路径跟踪控制系统,并对机器人进行了水田行走性能测试和信息采集试验。结果表明,机器人四轮驱动方式具备较好的速度一致性,地隙与轮距调节机构调节到位误差率为1.33%和0.73%;直线路径跟踪的平均横向误差为6.8 cm,直角转弯的平均收敛时间为25.6 s;机器人最大行驶速度为1 m/s,单点信息采集平均耗时为24.5 s,传感器采集的各类数据均满足使用要求,该信息采集机器人可实现复杂条件下的农田信息采集工作。  相似文献   

9.
设计了一种基于预瞄准纯追踪模型及模糊控制的轨迹追踪控制算法、基于液压系统及PID算法的自动转向控制系统。为测试轨迹追踪控制算法和自动转向控制系统的效果,以田间作业轮式机器人为试验平台,进行农机轨迹跟踪和转向控制试验。结果表明:轨迹追踪试验中车速为0.6m/s时,横向偏差最大为0.07m,平均横向偏差为0.05m左右;转向控制试验中,转向角响应时间不超过1.5s,超调量小于5%。  相似文献   

10.
基于自校准变结构Kalman的农机导航BDS失锁续航方法   总被引:2,自引:0,他引:2  
针对农机自动导航作业过程中存在的BDS信号失锁导致系统突然失控的问题,提出了一种适用于轮式农机的基于自校准变结构Kalman滤波器的农机导航BDS失锁续航方法。依据4自由度农机运动学模型,设计了BDS/INS信息融合Kalman滤波器;进行INS导航定位误差不确定度分析,并设计了基于自回归模型的航向校准方法、INS传感器角速率测量零偏实时校准方法,结合上述方法设计了自校准变结构滤波器,进行位姿信息处理,结合导航跟踪控制方法实现失锁续航功能。根据分米级精度要求,进行了机器人直线、矩形路径失锁续航试验和农机田间直线续航试验。机器人续航试验结果表明:行驶速度为1 m/s时,与运用未校准滤波器的续航系统相比,该方法实际平均横向偏差减小34%,横向偏差达到20 cm时机器人在路径上的平均行驶距离提高80%。农机田间续航试验结果表明:行驶速度为1 m/s时,在实际偏差小于20 cm的条件下,农机在路径上的行驶平均距离达到16. 65 m。  相似文献   

11.
果园移动机器人曲线路径导航控制   总被引:4,自引:0,他引:4  
陈军  蒋浩然  刘沛  张勤 《农业机械学报》2012,43(4):179-182,187
为实现移动机器人在果园非结构化环境下的自动行走,对果园移动机器人在复杂环境中的导航控制进行了研究。利用激光扫描获取果树位置信息,提出了一种果园环境下曲线导航路径的拟合算法;构建了以横向偏差和航向偏差为输入的模糊控制器;实现了移动机器人在曲线路径中的自动行走。机器人以0.54 m/s的速度沿正弦曲线行走,最大横向偏差为0.40 m,平均偏差为0.12 m。试验结果表明该系统路径拟合和导航控制算法性能良好。  相似文献   

12.
汽车稳定性控制系统性能试验与数据处理方法   总被引:1,自引:0,他引:1  
对美国汽车稳定性控制系统( ESC)性能试验法规FMVSS 126确定的ESC功能、过度转向特性和横向响应能力的客观测试和评价方法进行了系统分析.构建了先进的汽车道路试验系统,阐述了试验系统核心设备转向机器人的性能要求和结构,进行了系统的道路试验.采用小波降噪方法对试验数据进行了滤波处理,小波滤波无相位延时,且信号的局部特征都得到很好的保留,相比法规推荐的频域滤波方法,此方法更为精确.对DGPS方法和加速度方法处理得到的横向位移数据进行了对比,两种方法在转向开始后2 s内测试结果接近,误差小于5%,法规推荐采用加速度方法测量转向开始后1.07 s时车身横向位移是可行的.对3组具有区别意义的试验结果进行了分析,结果表明法规基于横摆角速度信息对汽车稳定性程度进行评价是可行的,但汽车接近失稳和失稳时的稳定性需要依据横摆角速度和质心侧偏角信息共同表征.  相似文献   

13.
为进一步提升农业机器人底盘田间转向效率,设计了一种基于自抗扰控制的农业机器人底盘双重转向运动控制系统。根据苹果种植农艺需求和行驶环境,确定了底盘组成和主要技术参数,开展了硬件系统搭建和部件选型。建立了底盘4自由度动力学模型,明确了衡量转向效率的状态空间方程。提出了一种基于自抗扰控制的双重转向控制策略,建立了Simulink动力学仿真模型,并进行了转向仿真模拟。仿真结果表明,自抗扰双重转向运动控制模型横摆角速度为0.241rad/s,转弯半径为1.96m,扰动恢复时间为1.04s,相较于传统PID双重转向控制模型,该模型横摆角速度更大、转弯半径更小、恢复稳定状态更快。田间试验结果表明,底盘平均横向偏移距离为18.5cm,滑移率为4.84%,大半径转弯测试中双重转向控制底盘的转弯半径平均值相比阿克曼转向控制分别减少0.60、0.57m,平均转向时间减少4.70、3.41s。小半径转弯测试中双重转向控制底盘的转弯半径平均值比阿克曼转向控制分别减少0.52、0.49m,平均转向时间减少10.27、8.22s。  相似文献   

14.
为解决牛场人工推翻饲料劳动强度大、工作时间长等问题,设计了一种基于激光雷达同步定位与建图(Simultaneous localization and mapping, SLAM)的牛场智能推翻草机器人自主导航系统,以期实现机器人在牛场环境中自主导航完成推翻草任务。自主导航系统通过激光雷达感知牛场环境,使用加载里程计信息的Cartographer算法构建牛场环境地图,采用未加载里程计信息的自适应蒙特卡洛定位(Adaptive Monte Carlo localization, AMCL)算法实现机器人的定位,并采用迪杰斯特拉算法(Dijkstra)规划机器人推翻草工作路径。试验表明,在构建牛场环境地图时采用机器人加载里程计信息的方式,横纵向偏差最大值低于未加载里程计信息时构建的地图,分别为0.02 m和0.14 m;在实现机器人的定位与导航时采用未加载里程计信息的方式,横纵向偏差最大值及航向偏角最大值分别小于0.04 m、0.10 m和11°,且导航精度高于加载里程计信息时的数值,满足牛场环境中推翻草作业时的导航精度要求。  相似文献   

15.
基于机器视觉边缘检测的园林喷药机器人导航线提取   总被引:1,自引:0,他引:1  
导航路径的精确拟合是园林机器人自动化导航的关键,针对现有园林喷洒机器人仍是人工操作为主的现象,提出一种基于视觉边缘检测的导航路径拟合算法,用于指导园林喷药机器人的自动化导航。首先利用“化曲为直”的思想,截取拍摄图像的最后200像素行作为感兴趣区域;其次提出一种针对园林道路的灰度化因子,对图像进行灰度化处理;然后对图像进行行扫描,根据噪声和道路在几何学上的差异,设定宽度阈值T,快速检测出道路边缘;根据检测出的边缘点,计算道路边缘点的均值拟合出边界线;最后,根据道路顶点坐标,计算出梯形道路的中轴线方程提取出导航线,为园林机器人导航提供参数。试验结果表明该算法处理一幅图像平均耗时53 ms,误差在0.6°内,可见本文所提算法可以满足实时性要求,且算法鲁棒性好、准确性高,为园林喷药机器人的自动化导航提供理论依据。  相似文献   

16.
力控和位置反馈型线控转向系统双向控制策略   总被引:1,自引:0,他引:1  
针对线控转向系统中角传动比和力传动比控制存在耦合的问题,在研究线控转向系统结构和动力学特点的基础上,综合传统遥操作机器人双向控制策略的优点,并分析其对于线控转向系统控制的适用性,提出了力控和位置差反馈型线控转向系统双向控制策略,设计了路感电动机和转向执行电动机闭环控制方法。通过实车试验验证了所设计的双向控制策略有效性。结果表明,提出的控制策略可以满足转向系统控制精度,从而保证整车的转向性能。  相似文献   

17.
为提高林果园移动机器人导航系统的精确性与鲁棒性,提出一种基于激光雷达三维点云的果园行间高低频双源信息融合实时导航方法。首先,喷雾机器人搭载三维激光雷达采集两侧果树点云信息,对原始点云数据进行直通滤波、降采样和统计滤波等预处理,保留感兴趣区域内果树冠层点云;然后,将分别基于高频更新的牛顿插值算法和低频更新的非线性支持向量机(Non-linear support vector machine, NSVM)算法拟合的行间导航线进行互补融合;最后,在导航线切换时,对融合后导航线的稳定性进行优化,并使用三次B样条算法使导航线平滑。实验结果表明:融合优化后的导航线最大曲率为0.048 m-1,平均曲率为0.018 m-1;分别以0.5 m/s和1.0 m/s的行驶速度对融合优化后的导航线进行跟踪,绝对横向偏差最大值分别为0.104 m和0.130 m,平均值分别为0.053 m和0.049 m,说明该导航方法能够满足作业装备在果园行间自主导航作业的需求,为喷雾机器人在果园环境中的自主导航提供技术参考。  相似文献   

18.
基于U-Net网络的果园视觉导航路径识别方法   总被引:5,自引:0,他引:5  
针对视觉导航系统在果园环境中面临的图像背景复杂、干扰因素多等问题,提出了一种基于U-Net网络的果园视觉导航路径识别方法。使用Labelme对采集图像中的道路信息进行标注,制作果园数据集;基于U-Net语义分割算法在数据增强的基础上对全卷积神经网络进行训练,得到道路分割模型;根据生成的道路分割掩码进行导航信息提取,生成路径拟合中点;基于样条曲线拟合原理对拟合中点进行多段三次B样条曲线拟合,完成导航路径的识别;最后进行了实验验证。结果表明,临界阈值为0.4时,语义分割模型在弱光、普通光以及强光照条件下的分割交并比分别为89.52%、86.45%、86.16%,能够平稳实现果园道路像素级分割;边缘信息提取与路径识别方法可适应不同视角下的道路掩码形状,得到较为平顺的导航路径;在不同光照和视角条件下,平均像素误差为9.5像素,平均距离误差为0.044 m,已知所在果园道路宽度约为3.1 m,平均距离误差占比为1.4%;果园履带底盘正常行驶速度一般在0~1.4 m/s之间,单幅图像平均处理时间为0.154 s。在当前果园环境和硬件配置下,本研究可为视觉导航任务提供有效参考。  相似文献   

19.
为了解决机器人将农产品从收获场所转移到仓库或运输车辆存在的移动轨迹和作业轨迹相对独立且耗时长的问题,本文设计一种物料移运机器人,并提出一种物料移运机器人协同作业时间最优轨迹规划方法,获得机器人作业系统和行驶系统协同作业的时间最优轨迹。该方法建立机器人协同作业的运动学模型和动力学模型,对物料移运机器人开展时间最优轨迹规划,并基于Lyapunov理论设计控制律减少跟踪误差,最后通过Matlab/Simulink和ADAMS联合仿真验证方法的有效性。结果表明,提出的轨迹规划方法可使机器人在抓放料协同作业和避障协同作业中取得平滑且时间最优的运动轨迹,机器人各关节的位移、速度、加速度、力/力矩曲线变化平缓,两履带牵引力满足机器人的要求且可快速稳定跟踪时间最优路径。  相似文献   

20.
李璞  冯博 《农机化研究》2016,(12):46-50
随着国力的不断增长,我国科技产业发展突飞猛进,机械自动化、计算机控制系统和测试计量行业的不断发展,使得移动机器人的研究也达到了一个前所未有的高度,机器人已经被广泛地应用到农业生产、工业生产、国家安全、生活服务和高等研究设计等领域的各个方面。移动机器人作为机器人的一部分,集中了智能传感技术、机械制造、电子无线通信技术、智能仪器和自动化控制工程等多学科的研究成果,是当前科技研究与设计最前沿的领域之一。为此,基于遗传算法优化RBF网络逼近算法,根据机器人运动轨迹的特性,研究了机器人运动轨迹控制技术,通过实时传感器在线感知系统,为智能机器人实时规划出无碰撞、路线短的运动轨迹。实验结果表明:所研究的机器人运动轨迹优化技术,具有较好的控制作用,其在行进过程中能及时、有效避地开前方障碍,可靠性强,稳定性好,应用前景非常广阔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号