首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
【目的】对甜玉米果皮厚度性状进行主基因 + 多基因遗传分析及 QTL 定位,研究甜玉米果皮厚度 的遗传机理,选育优质甜玉米品种。【方法】选用果皮厚度差异显著的甜玉米自交系 T15 与 T77 配制杂交组合 T77×T15。以该组合的 F2 群体作为试验材料,采用主基因 + 多基因混合遗传方法进行遗传模型分析;结合 F2 群 体各单株的果皮厚度及 SSR 遗传连锁图谱,利用复合区间作图法对甜玉米果皮厚度进行 QTL 定位。【结果】甜 玉米果皮厚度的最适模型为 A-1,即受 1 对主基因控制的加性和部分显性的遗传模型,主基因遗传率 69.10%。 在第 5、8 染色体上分别检测出 3 个与果皮厚度相关的 QTL,其中第 5 染色体 bin5.04 区域检测到 2 个 QTL, 分别位于标记区间 bnlg150~bnlg653 和 bnlg653~bnlg1208,加性效应值分别为 -2.39 和 -3.01;位于第 8 染色体 的 QTL 在 bin8.03~bin8.04 区域,标记区间为 umc1741~bnlg2046,加性效应值为 -3.06,表型贡献率为 22.02%。 【结论】甜玉米果皮厚度以主基因效应为主,在育种实践中可在早期世代进行遗传改良选择。试验检测到的 QTL 可用于分子标记辅助选择和品质育种。  相似文献   

2.
【目的】研究甜玉米根系相关性状的QTL,为甜玉米耐密、抗倒伏和抗逆育种提供理论依据。【方法】应用复合区间作图法,以甜玉米组合T49×T56的F2为作图群体,测定F2∶3家系的根长、根干质量和节根层数,并进行QTL定位。【结果】甜玉米遗传连锁图谱包含153个SSR位点,图谱全长1 199.1 cM,平均间距7.83 cM。检测到2个与根长相关的QTL位于第2、8染色体上,贡献率分别为19.70%和18.20%;5个与根干质量相关的QTL位于第3、4、8染色体上,单个QTL可解释5.28%~17.24%的表型变异;3个与节根层数相关的QTL位于第3、8染色体上,单个QTL贡献率为9.38%~21.13%。第8染色体检测到1个同时控制根长和根干质量的QTL位于bin8.02 区域,且与1个bin8.02-8.03区域控制节根层数的QTL紧密连锁,可分别解释18.20%,17.24%和21.13%的表型变异;1个同时控制根干质量和节根层数的QTL位于bin8.03区域,贡献率分别为17.13%和18.82%。【结论】第8染色体上在同一区域内出现控制不同性状的QTL。育种实践中,可利用根长、根干质量和根层数3个性状共同检测到的主效QTL及QTL富集区,进行分子标记辅助选择和遗传改良。  相似文献   

3.
特异玉米种质四路糯的穗行数遗传解析   总被引:1,自引:0,他引:1  
【目的】玉米穗行数与产量密切相关,剖析其遗传基础对指导玉米育种实践具有重要意义。【方法】以只有4行籽粒的中国特异地方品种四路糯选系和多穗行数的自交系农531为亲本,采取单粒传法(single seed descend method, SSD)构建正反交F2:3分离群体。在北京昌平和河南新乡采用随机区组试验设计进行分离群体家系的穗行数表型鉴定。与此同时,根据玉米基因组数据库上公布的标记信息,在全基因组范围内筛选获得173个具有多态性的SSR标记,用于群体基因型鉴定及遗传图谱构建。采用完备区间作图法(ICIM)和复合区间作图法(CIM)进行玉米穗行数QTL定位和遗传效应分析,利用SAS软件GLM程序估计主效QTL对分离群体穗行数遗传变异的贡献率。【结果】表型鉴定结果表明,亲本四路糯选系与农531的穗行数平均值分别为4.0行与19.2行,F2:3家系穗行数变化范围为4.0-17.4行。利用完备区间作图法,分别对北京昌平、河南新乡的正交F2:3群体进行穗行数QTL定位,2个环境下共检测到12个穗行数QTL,分布于除第1、7染色体外的其他8条染色体上。等位变异来源分析表明,本研究定位的QTL减效等位变异全部来自少穗行数亲本四路糯选系。共有5个主效QTL在2个环境下均被检测到,其中,位于bin2.04区间内的主效位点qKRN2-1在单环境下最大可解释群体穗行数变异的18.48%,其余4个主效位点及其单环境下解释的最大表型变异分别为qKRN4-2(11.58%)、qKRN5-1(13.55%)、qKRN8-2(16.91%)和qKRN9-1(9.66%)。利用复合区间作图法,在联合环境条件下共检测到5个穗行数QTL,分布在第2、4、5、8、9染色体上,每个QTL解释的表型变异范围为6.13%-10.05%,除位于第5染色体的QTL以外,其余4个位点与完备区间作图法定位到的主效QTL区间一致。一般线性模型分析显示,在2个环境下,5个主效QTL可分别解释正交F2:3群体51.5%(北京昌平)和54.0%(河南新乡)的表型变异。还定位到2对穗行数上位性QTL位点,分布于第2,、4、9染色体上,但表型贡献率分别仅为2.90%和1.80%。【结论】穗行数减效等位变异全部来自四路糯选系,鉴定出5个玉米穗行数主效QTL,分别位于bin2.04、bin4.09、bin5.04、bin8.05和bin9.03。表明该四路糯选系可作为重要的穗行数遗传研究材料,而定位到的主效QTL可作为玉米穗行数候选基因图位克隆和玉米遗传基础研究的重要候选区段。  相似文献   

4.
鲜食甜玉米籽粒蛋白质含量的QTL定位   总被引:1,自引:0,他引:1  
【目的】研究鲜食甜玉米籽粒蛋白质含量的QTL定位,为加快高蛋白质含量甜玉米的育种进程及实现分子标记辅助选择提供理论依据。【方法】以籽粒蛋白质含量有极显著差异的超甜玉米自交系T8和T48为亲本配制杂交组合,以232个F2单株为作图群体,构建了包含245个SSR标记位点、全长1 527.76cM的玉米遗传连锁图谱,标记间的平均距离为6.23cM,用复合区间作图法在F2和F2:3家系中检测籽粒蛋白含量相关QTL。【结果】在F2群体和F2:3家系中共检测到10个鲜食甜玉米籽粒蛋白含量QTL,分别位于第2、4、5、6和9号染色体上,其中F2群体、F2:3家系分别定位到4和6个籽粒蛋白含量QTL,单个QTL可解释5.97%~16.52%的表型变异。【结论】有2个主效QTL在F2群体和F2:3家系中均可被检测到,分别位于2号染色体的bnlg1017-umc1823区间和9号染色体上的umc2119两侧,1个主效QTL在F2:3家系的2个重复中均可检测到,位于第4号染色体的umc1808-umc1871区间。这些QTL可以作为利用分子标记辅助育种途径进行玉米遗传改良的依据。  相似文献   

5.
甜玉米株高的多世代遗传分析与QTL定位   总被引:2,自引:0,他引:2       下载免费PDF全文
【目的】研究甜玉米株高的遗传模式和QTL定位,为玉米高产、耐密和抗倒伏育种提供理论依据。【方法】以株高有显著差异的甜玉米自交系T14和T4为亲本配制杂交组合,采用主基因+多基因混合遗传模型和P1、P2、F1、B1、B2和F26个世代联合分析的方法,对甜玉米株高性状进行遗传分析;以330个F2单株为作图群体,采用复合区间作图法和群体分离分析法(BSA法),在F2和F2:3家系中检测株高QTL。【结果】玉米株高受2对加性-显性-上位性主基因控制,在各个分离世代都以主基因遗传为主;在F2群体中,检测到的3个QTL位于第1染色体,2个QTL位于第5染色体上,对表型变异的贡献率为7.8%~28.8%;在F2:3家系中,检测到的4个QTL位于第1染色体,4个QTL位于第5染色体上,对表型变异的贡献率为4.8%~27.4%。【结论】在F2和F2:3家系中检测到的株高QTL都集中在第1和第5染色体上,形成了2个明显的株高QTL簇,这一结果与2对主基因+多基因的遗传模型相吻合。  相似文献   

6.
【目的】为改良玉米雄穗性状.【方法】以雄穗一级分枝数有显著差异的超甜玉米自交系T4和T19为亲本,构建了包含232个单株的F2群体,考察雄穗一级分枝数,利用复合区间作图法进行QTL定位.【结果和结论】结果获得一张包含77个SSR标记的遗传连锁图谱,全长868.7 cM,标记平均间距为11.28 cM,共检测到4个与超甜玉米雄穗一级分枝数相关的QTL位点,分别位于玉米第4、7、8染色体上,可解释5.08%~17.71%的表型变异.主效QTL位点qTBN-4位于第8染色体,可解释17.71%的表型变异.这些QTLs将为雄穗一级分枝数的分子标记辅助选择提供依据.  相似文献   

7.
不同环境下多个玉米穗部性状的QTL分析   总被引:9,自引:3,他引:6  
 【目的】探讨穗部性状之间的相互关系及其遗传机制。【方法】以优良玉米自交系黄早四为共同亲本,分别与掖478和齐319杂交,构建两套F2:3群体为研究材料(分别缩写为Y/H和Q/H),在2007年和2008年分别在北京、河南、新疆等3个地点共6个环境下进行了穗长、穗粗、穗行数和穗粒重4个性状的表型鉴定,采用单环境分析和多年多点的联合分析方法对其进行了数量性状位点(QTL)分析。【结果】在单环境分析中,2个群体分别检测到33个QTL和 46个QTL,主要分布在第4、5、6、7、10染色体上。进一步分析发现,在Y/H群体中共定位到4个环境钝感的QTL(即在2或2以上环境下均能被检测到的QTL,且在联合分析中与环境无互作效应),其中以位于第4、5染色体上的qGW1-4-1、qKRE1-5-1对表型的贡献率最大,在不同的环境中对表型的贡献率均大于10%;在Q/H群体中共定位到6个环境钝感的QTL,其中以qKRE2-3-2、qED2-2-1对表型的贡献率最大,分别解释7.23%—18.3%和7.1%—15.6%表型变异。通过多个环境的联合分析,Y/H和Q/H群体分别检测到2个和6个QTL与环境存在显著互作,且以穗粒重与环境互作的QTL最多,而其它性状的大部分QTL与环境的互作效应不显著。上位性分析结果表明,只有少数几个显著QTL位点参与上位性互作,而大部分上位性QTL为非显著位点间的互作,对表型的贡献率较小。比较分析2个群体的QTL定位结果,在2个群体间共检测到4对共有QTL,分别与穗粒重和穗行数相关,位于bin1.10、bin5.05、bin6.05和bin7.02。【结论】这些在不同环境或不同遗传背景下检测到的QTL,可作为穗部性状改良的候选染色体区段,用于分子标记辅助选择或图位克隆,但是同时也要注意上位性和环境对它们的影响。  相似文献   

8.
【目的】雄穗性状是玉米生长发育过程中重要的农艺性状,对其遗传特性的研究具有重要的理论意义。【方法】本研究以Z58×Y915构建的192个F_(2:3)家系作为作图群体,结合2个环境下的表型鉴定,运用复合区间作图法(CIM)对玉米雄穗长(TL)、雄穗分枝数(TBN)和雄穗重(TW)等雄穗性状进行QTL定位分析。【结果】2个环境条件下,共检测到15个与TL性状连锁的QTL位点,分别位于第1、3、4、5、6、7、8号染色体上,可解释表型变异的0.66%~22.58%;在染色体bin值1.09、3.09位置,2个环境中均稳定检测到与TL连锁的QTL位点;共检测到12个与TBN性状连锁的QTL位点,分别位于第1、2、3、5、6、7、9号染色体上,可解释表型变异的3.05%~23.80%;在染色体bin值2.08、3.09位置,2个环境中均稳定检测到与TBN连锁的QTL位点;共检测到9个与TW性状连锁的QTL位点,分别位于第1、3、4、6、7、9号染色体上,可解释表型变异的4.52%~27.55%,在染色体bin值3.09、9.05位置,2个环境中均稳定检测到与TW连锁的位点。【结论】在不同环境下能够稳定存在的QTL位点可为玉米雄穗主要性状进一步遗传研究提供理论基础。  相似文献   

9.
利用优良抗病自交系K 22为供体亲本,感病自交系B 73为轮回亲本,构建了含有90个家系的BC_2F_4群体,用于玉米灰斑病抗性遗传分析。2016年和2017年对群体灰斑病抗性进行了鉴定,结合KASP分子标记构建遗传连锁图谱,对抗病QTL进行检测。结果表明,在2个环境中共鉴定了3个抗病位点QTL,分别位于第1(bin1.09),2(bin2.04)和7(bin7.04)染色体上,其中位于第2染色体上的QTL有较大的效应值,其加性效应为0.34,可以解释抗性10.2%的表型遗传变异。  相似文献   

10.
【目的】分析控制玉米叶宽的关键QTL位点,为选育具有理想株型的玉米奠定基础。【方法】以玉米自交系B73和郑58为亲本构建F2∶3家系,采用液相48k探针捕获技术检测基因型,对多环境下玉米叶宽表型进行QTL定位和全基因组选择。【结果】叶宽在基因型、环境、基因型与环境的互作变异项都具有显著差异,遗传力为0.39。共检测到12个穗位叶宽相关QTL位点,分别位于第1、3、4、5、8和10号染色体,表型贡献率为3.75%~16.17%。位于bin 1.06和bin 5.01的2个QTL在多环境下被检测到,具有环境稳定性,其中位于bin 5.01的QTL为主效位点,可用于精细定位研究。当SNP标记个数为300、训练群体占总群体50%时即可得到较好的预测精度。【结论】玉米叶宽是由主效多基因控制的,全基因组选择可以加速玉米叶宽性状的选育效率。  相似文献   

11.
森林植物分子生态学的研究方法   总被引:2,自引:0,他引:2  
森林植物分子生态学的核心内容是检测其群落、种群、个体水平上的遗传多样性.较详细地综述了DNA水平上森林植物分子生态学的研究方法;DNA分子标记、DNA测序、基因克隆技术、DNA芯片技术的的原理和方法;简要介绍了蛋白质水平上的研究方法:等位酶分析和蛋白质组学的原理和方法.  相似文献   

12.
分子遗传标记及其在猪育种中的应用   总被引:2,自引:0,他引:2  
概要地介绍了RFLP标记、小卫星DNA标记、微卫星DNA标记、随机扩增DNA多态性标记以及其它DNA多态性标记的研究及应用概况,并对遗传标记应用于猪的不同品系或品种的等位基因之组合、核心群内的标记辅助选择,以及其它在猪育种中新用途进行了综述,同时也对应用现状、前景作了分析。  相似文献   

13.
不同来源水稻二倍体的比较   总被引:2,自引:0,他引:2  
用几种不同来源的水稻二倍体为亲本材料进行配组,比较其后代之间的差异,从田间观察到分子标记的检测,没有发现这些二倍体之间有什么差别,说明从特异多倍体材料来源的二倍体和生产上常用的二倍体之间没有差别,可以作为亲开进行杂交,特异多倍体当中的遗传特性可以稳定地遗传下去。  相似文献   

14.
植物遗传标记的发展及应用   总被引:2,自引:0,他引:2  
从形态标记、染色体标记、生化标记及DNA分子标记等方面较为系统地介绍了植物遗传标记的进展与应用现状。  相似文献   

15.
鄂西地区青蒿遗传多样性研究   总被引:7,自引:0,他引:7  
利用RAPD和ISSR分子标记技术对11份鄂西野生青蒿种质进行了遗传多样性研究.结果表明,筛选出的8条RAPD和8条ISSR引物分别产生86条和102条扩增带,其中多态性条带分别为53条和62条,分别占总数的61.63%和60.78%.用POPGENE对两种标记方法的遗传多样性进行计算.有效等位基因数分别为1.355 2和1.370 7,基因多样性为0.2110和0.214 3,Shannon信息指数为0.318 8和0.321 6.以Nei氏遗传距离矩阵按UPGMA方法聚类分析RAPD和ISSR标记的遗传距离分别为0.035 5~0.411 3和0.142 3~0.401 1,平均值各为0.228 8和0.233 8,表明青蒿种质具有比较丰富的遗传变异,同时也说明,尽管Mantel相关性检测两种标记方法相关性较低(r=0.543 9,P0..05).但都可以有效地揭示青蒿种质的遗传多样性状况.  相似文献   

16.
蔬菜作物分子育种研究现状与趋势   总被引:6,自引:0,他引:6  
综述了近年来蔬菜作物分子育种研究的国际发展趋势,特别是一些分子育种新技术的出现对蔬菜作物分子育种的影响;概括了我国蔬菜作物分子育种的研究现状,总结了我国在分子育种研究中存在的优势,指出了发展我国分子育种研究迫切需要解决的几个关键问题。  相似文献   

17.
甘蔗是遗传上最为复杂的作物,它主要是由热带种(2n=80)、割手密(2n=40-128)等种间杂交而来。甘蔗的染色体数很多,在100-130条之间。其中,有5-10%的染色体来自割手密,其余主要来自热带种。由于这种特殊性,人们曾经认为甘蔗不能象其它作物那样进行分子作图。近年来,由于一些主要产糖国联合投入巨资开展这方面的研究,现已取得一些突破性进展。本文简要叙述分子标记的主要原理、特点以及在作物遗传育种上的应用潜势,阐述分子标记在甘蔗上的研究进展,指出甘蔗分子标记研究存在的一些问题和今后的研究方向,并对今后进一步研究提出自己的设想。  相似文献   

18.
分子标记技术在月季育种中的应用   总被引:1,自引:0,他引:1  
对分子标记技术在月季的种质资源鉴定、遗传多样性、分子标记辅助选择以及分子遗传图谱的构建等方面的应用进行了综述,并对其应用前景进行了展望。  相似文献   

19.
试论DNA分子标记技术在植物新品种鉴定中的应用前景   总被引:1,自引:0,他引:1  
介绍了形态标记、细胞学标记、生化标记、DNA分子标记在植物品种鉴定中的研究和应用,并讨论了各方法的优缺点。对SSR标记在植物新品种DUS测试中的应用前景作了探讨和展望。  相似文献   

20.
分子标记在蔬菜作物上的应用   总被引:11,自引:0,他引:11  
 概述了分子标记技术在蔬菜作物遗传图谱构建、种质资源研究、基因定位、分子标记辅助选择、品种纯度鉴定及杂种优势利用等方面应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号