首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
利用ISSR和RAPD标记构建红麻种质资源分子身份证   总被引:5,自引:3,他引:2  
【目的】对来源于不同国家和地区的51份红麻栽培种、野生种和近缘种进行遗传分析,构建红麻种质资源分子身份证。【方法】利用ISSR和RAPD标记对不同类型的51份红麻种质资源进行分析,计算其遗传相似系数,利用UPGMA法作聚类图,建立分子身份证。【结果】19个ISSR标记共产生113条条带,其中101条为多态性带,多态性比率(PPB)为89.38%;20个RAPD标记共产生118条条带,其中112条为多态性带,多态性比率(PPB)为94.92%。品种间多态性丰富,结合特征带、特异谱带类型和不同引物组合3种分析方法,可有效建立51份红麻种质资源的特异分子身份证。【结论】材料间遗传多样性较高,有较远的遗传距离和较宽的遗传基础,ISSR和RAPD标记技术可有效用于建立红麻种质资源分子身份证。  相似文献   

2.
用RAPD和ISSR法研究新疆红花主栽品种的遗传多样性   总被引:1,自引:0,他引:1  
[目的]对29份新疆红花栽培品种的遗传多样性进行检测.[方法]RAPD和ISSR分子标记技术.[结果]20个RAPD引物和18个ISSR引物分别扩增出156和112条带,多态条带比率(PPB)分别为92.31;和93.77;.RAPD和ISSR检测的有效等位基因数分别为1.508 1和1.513 7,基因多样性为0.311 5和0.341 6,Shannon多样性指数为0.473 8和0.479 8.以Nei氏遗传距离矩阵按UPGMA方法聚类分析结果RAPD和ISSR标记的遗传距离分别为0.108 2~2.054 1和0.123 4~2.153 5.[结论]红花不同品种之间具有比较丰富的遗传变异.对比RAPD和ISSR在PCR反应中的稳定性和检测变异的能力表明,对于实验条件的稳定性而言ISSR优于RAPD,且总的来说ISSR能检测到比RAPD更多的遗传变异.Mantel检测表明:这两种标记的分析结果有极显著的相关性r=0.963.  相似文献   

3.
应用RAPD和ISSR技术对20份橡胶树抗寒种质进行遗传多样性分析。结果表明,16个RAPD引物和12个ISSR引物分别扩增出条带113和101条,多态性条带指数(PPB)分别为61.1%和63.4%。据Nei-Li相似系数,ISSR标记在相似系数约0.74处,可将20份材料分为野生种质和栽培种质两大类;RAPD标记在相似系数约0.70处,也可将供试材料分为野生种质和栽培种质两类,但只有XJ002420为野生种质。对2种标记的分析结果进行相关分析,结果表明,RAPD和ISSR所检测的遗传相似系数呈极显著正相关,相关系数为0.672。以上结论表明,RAPD和ISSR标记可用于橡胶树种质资源的遗传多样性研究,但鉴于ISSR较RAPD有更强的多态性检出能力,ISSR技术应作为遗传多样性研究的首选单引物标记。  相似文献   

4.
四川不同地区硬头黄竹RAPD和ISSR分析   总被引:1,自引:0,他引:1  
以四川不同地区硬头黄竹为研究对象.通过随机扩增多态性DNA标记(RAPD)和简单序列重复区间(ISSR)标记进行扩增,探讨硬头黄竹的遗传多样性.研究表明,6个RAPD引物扩增出了42条条带,多态性高达69.05%;5个ISSR引物扩增出了47条条带,多态性为61.70%.利用Popgen32进行聚类分析,聚类结果可将不同地区的硬头黄竹类型区分开来.其遗传距离分别为0.182 3~0.602 2和0.043 5~0.672 1,说明RAPD和ISSR分子标记为硬头黄竹的遗传改良提供了理论依据.  相似文献   

5.
烟草赤星病菌遗传多样性的ISSR和RAPD标记比较分析   总被引:1,自引:0,他引:1  
采用ISSR和RAPD 2种分子标记方法对来自不同地区的28份烟草赤星病菌进行遗传多样性分析,筛选后选用10个ISSR引物和10个RAPD引物,ISSR扩增出多态性条带112条,多态性条带百分率为86.82%,菌株间相似性系数为0.53~0.97;RAPD引物扩增出多态性条带70条,多态性条带百分率为81.39%,菌株间相似性系数为0.57~0.94;用SPSS17.0软件对2种标记遗传距离进行相关性分析,发现2种分子标记结果呈显著正相关,表明2种分子标记方法都适合于烟草赤星病菌遗传多样性研究,ISSR是一种多态性优于RAPD的标记技术。根据2种标记的结果,利用NTSYS软件按UPGMA方法进行聚类分析,发现烟草赤星病菌遗传多样性与地理差异没有显著相关性。  相似文献   

6.
新疆梨种质资源亲缘关系的ISSR和RAPD分析   总被引:3,自引:0,他引:3  
[目的]探讨新疆梨种质资源亲缘关系以及遗传多样性,旨在为供试梨资源的分类提供科学依据.[方法]采用ISSR和RAPD分子标记对48份梨种质资源进行聚类分析和遗传关系研究.[结果]14条ISSR引物共扩增出113条清晰的谱带,其中101条显示多态性,平均每个引物扩增出7.2条多态性谱带.19条RAPD引物共扩增出163条清晰的谱带,其中多态性谱带138条,平均每个引物扩增出7.2条多态性谱带.基于ISSR和RAPD两种标记,利用UPGMA分别构建了48份梨资源的聚类树状图.ISSR和RAPD分别聚类以及两种标记混合聚类均将48份梨种质分为3类:第Ⅰ类群中包括1份种质;第Ⅱ类群中包括23份种质;第Ⅲ类群中包括24份种质.[结论]两种标记适合于梨种质资源亲缘关系和遗传多样性分析,可为梨资源的开发利用及新品种的选育提供科学依据.  相似文献   

7.
[目的]利用ISSR分子标记分析不同类型甘薯种质的遗传多样性,为甘薯种质资源的传播途径分析、分类鉴定、有效利用及杂交亲本选择等提供参考依据.[方法]从100条ISSR引物中筛选出多态性好、扩增条带清晰且重复性好的ISSR引物,利用其对129份甘薯种质材料进行扩增,通过DPS 7.05计算不同种质间的遗传距离,并采用非加权配对算术平均法(UPGMA)进行聚类分析.[结果]以筛选获得的20条ISSR引物对129份甘薯种质材料进行扩增,共获得232条条带,其中多态性条带230条,多态性条带比例达99.14%,平均每条ISSR引物扩增出11.60条条带.基于ISSR分子标记的5份野生种平均遗传距离为0.4637,124份甘薯栽培种平均遗传距离为0.1805.野生种与地方品种、引进品种和育成品种间的平均遗传距离分别为0.4688、0.4618和0.4643;而在124份栽培种中,地方品种与引进品种间的平均遗传距离最大(0.2024),引进品种与育成品种间的平均遗传距离最小(0.1673),地方品种与育成品种间的平均遗传距离为0.1978.聚类分析结果表明,当在遗传距离为0.3200时可将野生种与栽培种完全区分开;5份野生种在遗传距离为0.3200时又被划分为4个类别;124份栽培种在遗传距离为0.2000时可划分为6个类别,其中,新种花、福菜薯18号和黄皮9号3个品种各自单独组成一个类群(第Ⅰ、Ⅱ和Ⅴ类),金山57、豫薯8号和瑞薯1号组成第Ⅲ类;第Ⅳ类包含93个地方品种和育成品种;第Ⅵ类由25个地方品种和育成品种组成.[结论]不同类型和不同来源地的甘薯种质资源间存在较大遗传差异,以野生种与栽培种间的遗传差异最大,而栽培种间又以地方品种和引进品种间差异较大,即地方品种资源在我国甘薯育种亲本选择利用方面还具有很大的应用潜力.ISSR分子标记是一种适用于甘薯资源遗传多样性分析的理想分子标记.  相似文献   

8.
形态标记与RAPD标记在青蒿种质资源分类中的应用   总被引:1,自引:0,他引:1  
采用形态学标记和RAPD分子标记,对15份青蒿种质资源材料进行了遗传多样性分析,结果表明:株高、茎粗、茎色、夹角、节间距等形态指标适合于青蒿植物学性状观察记载;RAPD分子标记在供试材料中多态位点多,有效等位基因频率高,因此也适用于青蒿种质资源的鉴定.综合运用两种方法对青蒿种质资源材料进行区分鉴定切实可行,其准确率与所选用的标记种类和数量有关.  相似文献   

9.
利用RAPD(RandomAnaplifiedPolymorphicDNA)和ISSR(Inter-simpleSequenceRepeat)两种分子标记技术对20份韭菜栽培品种进行了遗传多样性研究。结果表明,筛选后选用的12个ISSR引物和15个RAPD引物分析分别产生了258和101条扩增产物带,其中多态性条带(即20个韭菜品种中一个或多个但不是全部具有的带)分别为132和40条,分别占总数的51.2%和39.6%。,也就是说12个ISSR引物和15个SSR引物对韭菜不同品种的扩增可分别产生51.2%和39.6%的多态性带。根据两种标记的结果,利用NTSYS软件计算Nei氏遗传距离,然后以Nei氏遗传距离矩阵按UPGMA方法进行聚类分析,发现供试材料之间具有较低的遗传多样性。其品种间遗传距离分别只有0.02-0.2和0.04-0.13,且大部分品种并没有按来源省份聚在一起。鉴于此,又对两种标记的多样性分析结果利用Mantel(1968)检验进行相关性检测,发现两种结果存在较低的相关性:r=0.47174,P<0.05。  相似文献   

10.
[目的]采用ISSR分子标记对13份广西收集引进和选育的香蕉种质资源进行遗传多样性分析,为广西香蕉品种改良及枯萎病抗性育种提供参考依据.[方法]从100条ISSR引物中筛选出多态性引物进行PCR扩增,利用PoPgen 1.32计算遗传多样性指数,DICE法计算遗传相似系数.利用非加权平均距离法(UPGMA)进行聚类分析.[结果]共筛选出8条扩增产物条带清晰、多态性好的ISSR引物,利用其从13份香蕉种质材料中扩增出234条条带,平均每条引物扩增出29.25条条带,其中多态性条带229条,多态性比率97.86%,平均观察等位基因数(Na)1.9786、有效等位基因数(Ne)1.4023、Shannon多样性信息指数(I)0.2603、Nei's基因多样性指数(H′)0.4135.13份香蕉种质材料的遗传相似系数为0.50~0.90,其中,巴贝多与GK1的遗传相似系数最小,为0.50,抗枯1号与抗枯5号的遗传相似系数最大,为0.90.在遗传相似系数0.59处可将13份香蕉种质资源聚成四大组,其中第Ⅱ组在相似系数0.74处被分为a和b亚组.在遗传相似系数0.90处可将13份香蕉种质材料完全区分开.[结论]广西香蕉种质资源的遗传多样性非常丰富.利用ISSR分子标记可将遗传背景及形态特征不同的香蕉种质资源进行有效分类,可用于香蕉种质资源分类、亲缘关系鉴定及辅助育种等研究.  相似文献   

11.
山蜡梅复合体的遗传多样性和居群遗传分化研究   总被引:1,自引:0,他引:1  
将山蜡梅、浙江蜡梅、突托蜡梅统称为山蜡梅复合体,应用RAPD和ISSR标记分别对来自7个不同居群共201个山蜡梅复合体单株进行DNA多样性检验。结果显示:从38个ISSR引物中筛选出12个条带清晰、重现性好、多态性高的引物,扩增出总条带数142条,大小在300~2800bp,多态率达94.37%,PIC0.31,MI3.33。在80个RAPD引物中,选出了12条合适的引物,扩增出条带数226条,大小在150~2200bp,多态率达95.13%,PIC0.37,MI4.91。两种分子标记计算出山蜡梅复合体居群的Nei’s基因多样性指数为0.2952,Shannon信息指数为0.4884,反映出山蜡梅复合体丰富的遗传多样性。进一步的AMOVA分析显示,山蜡梅复合体遗传变异大部分来自居群内变异,并且都达到极显著水平,这表明7个地理居群间存在着比较明显的遗传分化。UPMGA聚类分析发现,7个山蜡梅复合体居群被归为明显的3大支,且地理距离相邻的居群遗传距离也近,说明居群的聚类和地理距离有关。同时分析结果还为解决存在争议的新种的分类工作提供分子水平的有力证据。  相似文献   

12.
RAPD和ISSR标记检测黄麻属遗传多样性的比较研究   总被引:33,自引:1,他引:33  
应用RAPD和ISSR标记,分别对来自非洲地区和中国的15份黄麻野生种(10个种),以及来自中国、印度、越南、日本等地的12份黄麻栽培品种基因组DNA的遗传多样性进行检测。结果表明:(1)参与分析的所有RAPD和ISSR引物都对DNA模板浓度的梯度变化不敏感,对比RAPD和ISSR在PCR反应中的稳定性,ISSR优于RAPD;(2)25个RAPD和ISSR引物分别扩增出329条和283条带,多态比率分别为89.36%和92.5%,显然,ISSR检测出的多态性条带的能力优于RAPD;(3)RAPD和ISSR标记检测同组供试材料种间或种内的遗传相似性系数(GS)范围,分别为0.48~0.98和0.33~0.97,ISSR检测出种间遗传多样性的分辨力较RAPD为高,但两者GS相关系数高达0.955;(4)RAPD和ISSR标记的分子聚类获得了趋势相近,但不完全相同的聚类树,两种标记均能准确地把原始黄麻野生种与栽培种中的长果种和圆果种及其近缘野生种聚在不同的种群中,分子分类结果与传统经典分类相符,并揭示出种间或种内基因型的遗传差异与亲缘关系,而ISSR比RAPD能检测到种间更高的遗传差异性;(5)两种标记均可揭示种间与种内的遗传多样性及其进化的亲缘关系,可为进一步开展黄麻分子辅助育种和起源与进化研究提供有价值的理论依据。  相似文献   

13.
应用RAPD、AFLP、SSR等3种分子标记,对吉富品系尼罗罗非鱼选育群体的多态性进行了分析.在40条RAPD引物、19对SSR引物、64对AFLP引物中,具有多态性、重复性好的引物分别为17条、19对和8对,扩增出多态性条带数分别为35、92、181条.结果表明,RAPD、AFLP、SSR多态性条带比例分别为20.35%、79.64%和58.77%,平均每个(对)多态性引物可以扩增出多态性片段数目分别为2.06、4.84和22.63.说明SSR和AFLP是研究吉富罗非鱼选育群体更为有效的分子标记.  相似文献   

14.
Genetic diversity of 48 sweetpotato landraces randomly sampled from Anhui,Fujian, Henan and Guangdong provinces in China was analyzed using RAPD, ISSR and AFLP markers. Thirty RAPD primers, 14 ISSR primers and 9 AFLP primer pairs generated 227, 249 and 260 polymorphic bands, respectively. AFLP markers were better than RAPD and ISSR markers in terms of the number of polymorphic bands detected and the experimental stability. These three molecular markers revealed the similar results that Chinese landraces exhibited a high level of genetic diversity, and the genetic variation of Guangdong landraces was significantly higher than those of the landraces from the other three regions. These results supported the hypothesis that China was a secondary center of sweetpotato diversity. The present results also supported the view that sweetpotato was first introduced to Guangdong and from there spread to other regions of China. The dendrogram based on the combined RAPD, ISSR and AFLP dataset could separate the 48 landraces into two groups: One mainly including 8 landraces from Guangdong and the other consisting of the remaining landraces from Guangdong and landraces from the other three regions. Thus, the utilization of Guangdong landraces should be specially considered in sweetpotato breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号