首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
2.
Three commercial formulations of strobilurins, viz., azoxystrobin, kresoxim-methyl, and trifloxystrobin were evaluated for their efficacy against pearl millet downy mildew disease caused by Sclerospora graminicola. In vitro studies revealed inhibition of S. graminicola sporulation, zoospore release, and zoospore motility at 0.1-2 μg ml−1 of all the three fungicides. The fungicides were evaluated for phytotoxic effects on seed quality parameters and for their effectiveness against downy mildew disease by treating pearl millet by: (1) seed dressing, (2) seed dressing followed by foliar spray, and (3) also by foliar spray alone. The highest non-phytotoxic concentrations of 5, 10, and 10 μg ml−1 for azoxystrobin, trifloxystrobin, and kresoxim-methyl, respectively, were selected for further studies. Under greenhouse conditions, these fungicides showed varying degrees of protection against downy mildew disease. Among the three fungicides, azoxystrobin proved to be the best by offering disease protection of 66%. Further, seed treatment along with foliar application of these fungicides to diseased plants showed enhanced protection against the disease to 93, 82, and 62% in treatments of azoxystrobin, kresoxim-methyl and trifloxystrobin respectively. Foliar spray alone provided significant increase in disease protection levels of 91, 79, and 59% in treatments of azoxystrobin, kresoxim-methyl, and trifloxystrobin, respectively. Disease curative activity of azoxystrobin was higher compared to trifloxystrobin and kresoxim-methyl. Tested fungicides showed weaker translaminar activity, as the disease inhibition was marginal when applied on adaxial leaf surface. Partial systemic activity of azoxystrobin was evident by root uptake, while trifloxystrobin and kresoxim-methyl showed lack of systemic action in pearl millet. A trend in protection against downy mildew disease similar to greenhouse results was evident in the field trials. Grain yield was significantly increased in all strobilurin fungicide treatments over control and maximum increase in yield of 1673 kg ha−1 was observed in combination treatments of seed treatment and foliar spray with azoxystrobin.  相似文献   

3.
Glasshouse studies were undertaken to determine if fungicides used for the control of Fusarium head blight (FHB) result in elevated concentrations of the trichothecene mycotoxin, deoxynivalenol (DON) in harvested wheat grain. Metconazole and azoxystrobin, at double, full, half or quarter the manufacturer's recommended dose rate, were applied to ears of wheat (cv. Cadenza), artificially inoculated with conidia of either Fusarium culmorum or F. graminearum. Metconazole demonstrated high activity against both pathogens, reducing significantly the severity of FHB and the DON concentrations at each of the four dose rates tested when compared to untreated controls. Applications of azoxystrobin significantly reduced FHB and DON compared to unsprayed controls. However, their effectiveness was significantly less than that of metconazole and no dose rate response was observed. Quantification of the amount of trichothecene-producing Fusarium present in harvested grain was determined using a competitive PCR assay based on primers derived from the trichodiene synthase gene (Tri5). Simple linear regression analyses revealed strong relationships between the amount of trichothecene-producing Fusarium present in grain and the DON concentrations (r 2=0.72–0.97). It is concluded that fungicides, applied for the control of FHB, affect DON concentrations indirectly by influencing the amount of trichothecene-producing Fusarium species present in wheat grain. There was no evidence that fungicide applications directly increase the concentration of DON in grain.  相似文献   

4.
5.
12种杀菌剂防治水稻纹枯病田间试验研究   总被引:2,自引:0,他引:2  
本文报道了12种杀菌剂防治水稻纹枯病的田间试验研究。结果表明:噻呋酰胺24%悬浮剂339g/hm2、嘧菌酯25%悬浮剂500g/hm2、丙环唑25%乳油750g/hm2在2次药后15d对水稻纹枯病的防治效果分别为91.5%、88.1%、86.6%,显著高于其他处理;肟菌·戊唑醇75%水分散粒剂防效为77.0%,稍次于丙环唑25%乳油;其他8种杀菌剂的防效在54.1%~68.7%之间,防效不太理想;井冈霉素20%可湿性粉剂的防效仅为56.6%,故笔者认为在水稻纹枯病大发生年份,尽量选用其他高效的杀菌剂进行预防和防治。  相似文献   

6.
为探明不同杀菌剂对小麦赤霉病和小麦籽粒DON毒素(包括DON、3-ADON和15-ADON)的控制效果, 采用菌丝生长速率法测定了12种药剂对禾谷镰刀菌野生型菌株PH-1的室内活性, 同时采用液相色谱-串联质谱法(LC-MS)测定了这些药剂对DON毒素的抑制效果, 并开展了小麦赤霉病及籽粒DON毒素的田间防治试验。结果表明, 12种原药对菌丝生长抑制活性强弱依次为氟唑菌酰羟胺>咪鲜胺>戊唑醇>丙硫菌唑>叶菌唑>氰烯菌酯>氟环唑>多菌灵>甲基硫菌灵>吡唑醚菌酯>嘧菌酯>井冈霉素A。氟环唑EC50和EC90离体胁迫均刺激DON毒素产生, 其他杀菌剂EC50和EC90胁迫均抑制DON毒素产生。田间试验结果表明, 200 g/L氟唑菌酰羟胺SC、30%丙硫菌唑OD和20%叶菌唑WP病指防效和DON防效为87.68%~94.77%; 430 g/L戊唑醇SC、25%氰烯菌酯SC、45%咪鲜胺EW、25%氟环唑SC、50%多菌灵WP和70%甲基硫菌灵WP病指防效和DON防效为57.63%%~85.49%; 250 g/L吡唑醚菌酯EC和250 g/L嘧菌酯SC病指防效分别为72.18%和51.98%, DON防效分别为43.06%和-7.96%; 24%井冈霉素A AS病指防效和DON防效分别为42.37%和62.87%。药剂离体和田间控毒效果不完全一致, 赤霉病有效防控是DON防控的前提, 病害防效与DON防效不完全一致, 本研究为小麦赤霉病及籽粒DON毒素防控提供了科学依据。  相似文献   

7.
Fusarium head blight of cereals has, in recent years, become one of the most important pre-harvest diseases worldwide. This paper examines the in vitro efficacy of fungicides to control Fusarium species in cereals and the efficacy in the field on both Fusarium infection of ripening ears as well as their impact on mycotoxin production. Field studies suggest that fungicides such as tebuconazole and metconazole give good control of both Fusarium infection of ears and control of deoxynivalenol (DON) production. However, azoxystrobin and related fungicides are less effective, and grain from treated crops has sometimes been found to have increased concentrations of DON and nivalenol. Studies of isolates of Fusarium culmorum from different parts of Europe showed that complex interactions occur between environmental factors, fungicide type and isolate in relation to growth inhibition and DON production. These studies confirmed the ineffectiveness of azoxystrobin and suggest that environmental stress factors, particularly water availability and temperature, and low fungicide doses may stimulate mycotoxin production by Fusaria in vitro and in wheat grain.  相似文献   

8.
Functioning Tri13 and Tri7 genes are required for the production of nivalenol and 4-acetyl nivalenol, respectively, in Fusarium species producing type B trichothecenes. Mutations have been identified in isolates which are able to produce deoxynivalenol (DON) but unable to convert this to nivalenol (NIV). In such isolates of Fusarium culmorum , the Tri7 gene is deleted entirely. PCR assays specific for functional and nonfunctional/deleted versions of Tri7 and Tri13 were used to determine the ability of 153 single spore isolates of F. culmorum to produce the 8-ketotrichothecenes deoxynivalenol and nivalenol. The isolates were collected from 76 different locations across England and Wales between 1994 and 2002. Four isolates were also obtained from one field in Scotland. Both DON and NIV chemotypes of F. culmorum were identified, with DON chemotypes predominating overall. In addition, all DON chemotypes were shown to produce 3-acetyl DON using primer sets developed to Tri3 . From fields where more than one F. culmorum isolate was obtained, isolates were not exclusively of a single chemotype. Differences in the distribution of DON and NIV chemotypes were identified, with a greater proportion of NIV chemotypes present in the south and west of England and Wales, whereas a greater proportion of DON chemotypes were found in the north and east of England. Seasonal differences in the ratio of DON:NIV chemotypes were indicated. However, these were related to seasonal variation in the distribution of F. culmorum .  相似文献   

9.
The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of $0.12/kg ($2.97/bushel) and application costs of $40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.  相似文献   

10.
Fusarium graminearum, Fusarium culmorum and Fusarium cerealis are major causal agents of Fusarium Head Blight (scab) which is a disease of global significance in all cereal growing areas. These fungi produce trichothecene mycotoxins, principally nivalenol (NIV) and deoxynivalenol (DON). Genes Tri13 and Tri7 from the trichothecene biosynthetic gene cluster convert DON to NIV (Tri13) and NIV to 4-acetyl-NIV (Tri7). We have developed positive–negative PCR assays based on these two genes, which accurately indicate a DON or NIV chemotype in F. graminearum, F. culmorum and F. cerealis. These assays are useful in assessing the risk of trichothecene contamination, and can be informative in epidemiological studies. All NIV chemotype isolates studied have functional copies of both Tri13 and Tri7, and all DON-producing isolates have both genes disrupted or deleted. We have identified several mutations in these genes, which are conserved across F. graminearum lineage, RAPD and SCAR groupings and between the three species. There appears to be evidence of inter-species hybridisation within the trichothecene biosynthetic gene cluster.  相似文献   

11.
A total of 82 fungal isolates was obtained from wheat kernel samples affected by fusarium head blight collected from 20 locations in southern Brazil. Polymerase chain reaction (PCR) assays were used to characterize trichothecene mycotoxin genotypes [deoxynivalenol (DON), nivalenol (NIV) and two acetylated derivatives of DON]. To identify isolates that producing DON and NIV, portions of the Tri13 gene were amplified. To identify 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes, portions of Tri3 and Tri12 were amplified. Nearly all of the isolates studied (76/82) were of the DON/15-ADON genotype. Six of the isolates were of the NIV genotype. The DON/3-ADON genotype was not observed. Portions of three genes were sequenced from representative isolates of the NIV and DON/15-ADON genotypes and compared with sequences from curated reference isolates of Fusarium in GenBank. blast queries for individual gene sequences and pairwise comparisons of percentage identity and percentage divergence based on 1676 bp of concatenated DNA sequence suggested that the isolates representing the DON/15-ADON genotype were Fusarium graminearum sensu stricto and the isolates representing the NIV genotype were Fusarium meridionale . This is the first detailed report of trichothecene mycotoxin genotypes of F. graminearum and F. meridionale in Brazil.  相似文献   

12.
BACKGROUND: The major facilitator superfamily (MFS) drug transporter MgMfs1 of the wheat pathogen Mycosphaerella graminicola (Fuckel) J Schroeter is a potent multidrug transporter with high capacity to transport strobilurin fungicides in vitro. The data presented in this paper indicate that, in addition to the predominant cause of strobilurin resistance, cytochrome b G143A subsititution, MgMfs1 can play a role in sensitivity of field strains of this pathogen to trifloxystrobin. RESULTS: In a major part of field strains of M. graminicola (collected in the Netherlands in 2004) containing the cytochrome b G143A substitution, the basal level of expression of MgMfs1 was elevated as compared with sensitive strains lacking the G143A substitution. Induction of MgMfs1 expression in wild-type isolates upon treatment with trifloxystrobin at sublethal concentrations proceeded rapidly. Furthermore, in disease control experiments on wheat seedlings, disruption mutants of MgMfs1 displayed an increased sensitivity to trifloxystrobin. CONCLUSION: It is concluded that the drug transporter MgMfs1 is a determinant of strobilurin sensitivity of field strains of M. graminicola.  相似文献   

13.
The effects of propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole (as a tank mix or a formulated premix) on the control of Fusarium head blight index (IND; field or plot-level disease severity) and deoxynivalenol (DON) in wheat were determined. A multivariate random-effects meta-analytical model was fitted to the log-transformed treatment means from over 100 uniform fungicide studies across 11 years and 14 states, and the mean log ratio (relative to the untreated check or tebuconazole mean) was determined as the overall effect size for quantifying fungicide efficacy. Mean log ratios were then transformed to estimate mean percent reduction in IND and DON relative to the untreated check (percent control: C(IND) and C(DON)) and relative to tebuconazole. All fungicides led to a significant reduction in IND and DON (P < 0.001), although there was substantial between-study variability. Prothioconazole+tebuconazole was the most effective fungicide for IND, with a C(IND) of 52%, followed by metconazole (50%), prothioconazole (48%), tebuconazole (40%), and propiconazole (32%). For DON, metconazole was the most effective treatment, with a [Formula: see text](DON) of 45%; prothioconazole+tebuconazole and prothioconazole showed similar efficacy, with C(DON) values of 42 and 43%, respectively; tebuconazole and propiconazole were the least effective, with C(DON) values of 23 and 12%, respectively. All fungicides, with the exception of propiconazole, were significantly more effective than tebuconazole for control of both IND and DON (P < 0.001). Relative to tebuconazole, prothioconazole, metconazole, and tebuconzole+prothioconzole reduced disease index a further 14 to 20% and DON a further 25 to 29%. In general, fungicide efficacy was significantly higher for spring wheat than for soft winter wheat studies; depending on the fungicide, the difference in percent control between spring and soft winter wheat was 5 to 20% for C(IND) and 7 to 16% for C(DON). Based on the mean log ratios and between-study variances, the probability that IND or DON in a treated plot from a randomly selected study was lower than that in the check by a fixed margin was determined, which confirmed the superior efficacy of prothioconazole, metconazole, and tebuconzole+prothioconzole for Fusarium head blight disease and toxin control.  相似文献   

14.
Tan spot, caused by the fungus Pyrenophora tritici-repentis (Ptr), is a disease that has become more prevalent and intense in wheat crops in Argentina in recent years. Failure to control the disease with strobilurin fungicides, which were once effective, has been observed in different zones where wheat is grown. However, whether or not true resistance is present in the pathogen population in the region is not scientifically confirmed. This study evaluated the sensitivity of numerous Ptr isolates to representative QoI fungicides used in Argentina through in vitro and in planta assays, as well as through molecular analysis. Eighty-two monosporic isolates obtained in different locations in the north and south of Buenos Aires province in 2014, 2016, and 2018 were tested to determine sensitivity to selected QoI fungicides in conidial germination and mycelial inhibition assays, as well as in molecular analysis. Conidial germination was not inhibited at 1 µg/ml of azoxystrobin, trifloxystrobin, and pyraclostrobin. On the other hand, mycelial growth was inhibited by 59%, 56%, and 86% at 100 µg/ml of azoxystrobin, trifloxystrobin, and pyraclostrobin, respectively. The molecular analysis detected the G143A mutation in the cytb gene of all the 82 Ptr isolates, but the F129L and G137R substitutions were not present. This study documents the G143A mutation conferring QoI resistance in Ptr in South America. The findings of this study are key for future decisions regarding use of fungicide and rotation in the region.  相似文献   

15.
针对紫皮石斛锈病。试验选用10%苯醚甲环唑WG,250 g/L嘧菌酯SC,29%吡萘·嘧菌酯SC,75%肟菌·戊唑醇WG 4种杀菌剂进行田间药效试验。结果表明:复配剂29%吡萘·嘧菌酯SC 600 mL/hm~2与75%肟菌·戊唑醇WG 300 g/hm~2,防效相当且显著高于其余两个施药处理,在第3次施药后7 d时达最高防效分别为87.70%和88.56%,鲜重折合产量比空白对照分别增产13.48%、13.22%,可在实际生产中交替使用。  相似文献   

16.
针对防治玉米瘤黑粉病药剂的筛选,建立了一套应用酶标仪室内快速筛选的方法。采用含药的马铃薯葡萄糖液体培养基 (PDB) 进行筛选,初始孢子培养浓度为106个/mL,在摇床中于28 ℃、200 r/min下培养16 h后测定光学密度 (OD) 值,最佳OD值测定波长为590 nm。应用该方法对戊唑醇、吡唑醚菌酯、嘧菌酯、丙环唑和氟唑环菌胺5种杀菌剂进行筛选,结果表明:戊唑醇和氟唑环菌胺对玉米瘤黑粉病致病菌玉蜀黍黑粉菌有明显的抑制作用,其EC50值均为0.03 mg/L。本研究建立的酶标仪快速筛选方法检测过程快速准确,重复性好,是一种值得推荐的检测方法,可为田间试验提供参考。  相似文献   

17.
Postharvest losses due to pathogens are a major concern in agriculture and therefore new strategies to reduce these losses while making sure that the treated products are safe for the consumer, are of paramount importance. Chemical fungicides treatment is not only unsafe but also leads to pathogen developing resistance. Therefore, products that can reduce the development of dry rot of potato and mycotoxin accumulation, and be safe are needed. A better understanding of the induction of trichothecene biosynthesis is essential to reduce trichothecene production. The effects of three elicitors such as β-amino butyric acid (BABA), sodium silicate and chitosan, on the suppression of lesion development, trichothecene accumulation, and expression of Tri genes were assessed in potato tubers inoculated with Fusarium sulphureum. The results showed that lesion diameters were significantly reduced after treating with BABA at 100 mM for 3 d, sodium silicate at 100 mM for 2 d and chitosan at 0.50% for 3 d. Tri gene expressions were significantly down-regulated in inoculated tubers after elicitor treatments, and trichothecene accumulation were also suppressed. Meanwhile, the levels of trichothecene accumulation and Tri genes expression showed cumulative changes with the incubation time, extending after elicitor treatments. In addition, elicitor applications reduced more for type A trichothecene (T-2, DAS) than type B trichothecene (3ADON, Fus-X). It is possible that elicitors triggered downstream resistance genes to produce resistance related metabolites that suppressed the biomass of F. sulphureum, resulting in reduced Tri gene expressions and trichothecene accumulation.  相似文献   

18.
The impact of four modern fungicides JS399-19 (2-cyano-3-amino-3-phenylancryic acetate) (novel fungicide), azoxystrobin (a strobilurin), tebuconazole (a triazole) and carbendazim (a benzimidazole), applied as foliar spray at the recommended field rate, on the physiology and biochemistry of the senescence process and grain yield was studied in winter wheat (Triticum aestivum L. cv. ‘Nannong No. 9918’) under natural environmental conditions. Fungicide treatments to wheat plants at growth stage [ZGS] 57 (3/4 of head emerged) significantly increased the chlorophyll (CHL) and soluble protein (SP) content and decreased the malondialdehyde (MDA) content and electrolyte leakage. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in flag leaves of the fungicide-treated plants were also higher than that in untreated plants. These coincided with elevated levels of H2O2 and reduced level of in the fungicide-treated plants. The results suggested that the fungicide-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). Because all fungicides can induce the delay of wheat senescence, fungicide-treated wheat shown higher grain yield than untreated wheat. Of all tested fungicides, JS399-19, azoxystrobin and tebuconazole showed similar effects on delaying senescence of wheat and enhancing the grain yield of wheat, but JS399-19 was more efficient in general.  相似文献   

19.
甲氧基丙烯酸酯类和三唑类杀菌剂对斑痣悬茧蜂的毒性   总被引:1,自引:0,他引:1  
为明确甲氧基丙烯酸酯类(嘧菌酯、醚菌酯、肟菌酯)和三唑类(粉唑醇、腈菌唑、戊唑醇、己唑醇及戊菌唑)杀菌剂对寄生性天敌斑痣悬茧蜂Meteorus pulchricornis的毒性风险,在室内分别采用药膜法和摄入法测定了上述8种杀菌剂对斑痣悬茧蜂存活的影响。结果表明,处理方法对结果有明显影响。在药膜法处理中,肟菌酯表现出最高的触杀毒性,其致死中时间(LT50值)为1.18d;戊菌唑次之,其LT50值为1.98d;粉唑醇的毒性最低,LT50值长达52.58d。在摄入法处理中,供试杀菌剂的LT50值均大于15d。除粉唑醇药膜处理和己唑醇摄入处理外,其余处理斑痣悬茧蜂的寿命均显著缩短。因此,在实际生产中应关注甲氧基丙烯酸酯类和三唑类杀菌剂,尤其是肟菌酯和戊菌唑对斑痣悬茧蜂等寄生蜂天敌的安全性。  相似文献   

20.
BACKGROUND: A mixture of trifloxystrobin and tebuconazole is excellent in controlling both powdery and downy mildew of grapes. The objective of the present work was to study the behaviour of trifloxystrobin and tebuconazole on grape berries and soil following treatment with Nativo 75 WG, a formulation containing both fungicides (trifloxystrobin 250 + tebuconazole 500 g kg?1). This study was carried out for planned registration of this mixture for use on grapes in India. RESULTS: Initial residue deposits of trifloxystrobin and tebuconazole on grapes were below their maximum residue limit (MRL) of 0.5 and 2 mg kg?1, respectively, when Nativo 75 WG was applied at the recommended dose of 175 g product ha?1. The residues dissipated gradually to 0.02 and 0.05 mg kg?1 by 30 days, and were below the quantifiable limit of 0.01 mg kg?1 at the time of harvest (60 days after the last treatment). Trifloxystrobin and tebuconazole dissipated at a pre‐harvest interval (PHI) of 36 and 34 days, respectively, from the recommended treatment dose. The acid metabolite of trifloxystrobin, CGA 321 113, was not detected in grape berries at any point in time. Soil at harvest was free of any pesticide residues. CONCLUSION: Residue levels of both trifloxystrobin and tebuconazole were below MRLs when grapes were harvested 30 days after the last of four applications of 175 g product ha?1 (trifloxystrobin 44 g AI ha?1, tebuconazole 88 g AI ha?1) under the semi‐arid tropical climatic conditions of India. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号