首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
播期和密氮组合对镇麦10号干物质积累及产量的调控效应   总被引:4,自引:0,他引:4  
为确定江苏淮南麦区红皮强筋小麦高产栽培的适宜播期、种植密度和氮肥施用量,选用红皮强筋小麦新品种镇麦10号作为试验材料,在基施45%复合肥375 kg·hm-2和尿素150 kg·hm-2条件下,分析了播期和密氮组合对小麦群体干物质积累和产量的影响。结果表明,播期和密氮组合对镇麦10号产量及干物质积累量有极显著的影响。随着播期的延迟,镇麦10号产量先升后降,穗数和千粒重下降,穗粒数略有增加。11月5日播种较10月20日和11月20日播种分别增产2.26%和10.59%;种植密度对籽粒产量的影响因播期不同而有所差异;种植密度增加有利于提高有效穗数,但降低穗粒数和千粒重。10月20日播种时,提高种植密度不利于产量的增加,在基本苗225×104 株·hm-2下平均产量最高,较基本苗300×104 和375×104 株·hm-2分别增产3.52%和9.21%;11月5日和11月20日播种时,籽粒产量随着密度的提高而增加,以基本苗375×104 株·hm-2的产量最高,较基本苗225×104 和300×104株·hm-2分别增产6.32%、4.89%和4.58%、3.25%。增加追氮量有利于穗数、穗粒数和千粒重的增加,但过量追氮时,穗数、穗粒数和千粒重降低;追施纯氮120 kg·hm-2可显著提高籽粒产量,追氮量过多过少均不利于产量的增加。早播、增加种植密度、增施氮肥均能促进镇麦10号干物质积累,但不利于产量的提高。在本试验条件下,镇麦10号高产最适播期为11月5日,最优密度为375×104 株·hm-2,适宜追氮量为120 kg·hm-2。  相似文献   

2.
为了探究不同缓释肥配比与基本苗互作对冬小麦生产的影响,以中筋小麦扬麦25为材料,于2019-2020年在江苏省仪征市进行田间试验,设置100%普通尿素(S1)、50%缓释肥与50%尿素配施(S2)、100%缓释肥(S3)3种施肥处理及4种氮密模式[施氮(纯N)量225 kg·hm-2、密度225×10株·hm-2(A1);施氮量191.25 kg·hm-2、密度258.75×10株·hm-2(A2);施氮量157.5 kg·hm-2、密度292.5×10株·hm-2(A3);施氮量123.75 kg·hm-2、密度326.25×10株·hm-2(A4)],研究不同处理对冬小麦产量及其构成因素、品质的影响。结果表明,氮肥类型和氮密模式均对产量有极显著效应;与 A1处理比较,A2处理的穗数和穗粒数较高,千粒重下降,继续增加种植密度、减少施氮量后,穗数与穗粒数显著下降;产量以S2A2与 S3A2组合处理较高。S2与S3处理的氮肥利用率与氮素农学效率均优于S1处理,A4模式的氮素农学效率最高,不同氮密模式处理间的氮肥利用率差异不显著。氮肥类型与氮密模式对出粉率、容重与硬度影响不显著,对湿面筋含量、沉降值、面团形成时间、面团稳定时间与吸水率有极显著影响, A1和 A2处理的品质表现较好,S2与S3处理的小麦二次加工品质优于S1处理;氮肥类型与氮密模式互作对籽粒蛋白质含量与产量有极显著影响。本试验条件下,50%缓释肥与50%尿素配施或100%缓释肥处理下,施氮量191.25  kg·hm-2、密度258.75×10株·hm-2(A2),施用基肥与返青肥,有利于小麦减氮稳产、改善品质、提高氮肥利用率。  相似文献   

3.
密度与肥料运筹对迟播小麦产量和茎秆抗倒能力的影响   总被引:4,自引:0,他引:4  
为给迟播小麦抗逆高产栽培提供参考,以扬麦23为材料,通过三因素裂区试验,设置2个密度水平(210×104和270×104株·hm-2)、3个施氮水平(180、225和270 kg·hm-2)和2个氮肥运筹比例(基肥∶壮蘖肥∶拔节肥∶孕穗肥分别为4∶2∶1∶3和6∶0∶2∶2),研究了密度、氮肥用量及运筹比例对小麦产量、茎秆形态特性、化学成分以及抗倒能力的影响。结果表明,高密度(270×104株·hm-2)处理的平均产量高于低密度(210×104株·hm-2)处理,平均增产2.7%;低密度条件下,随施氮量的增加,产量上升,而高密度条件下则先增后降。增加播种密度会增加茎秆基部节间长度和株高,降低茎秆基部节间单位长度干重以及木质素含量,从而影响小麦的抗倒性能。减少氮肥施用量、基肥施用量和控制拔节期施肥比例均能够有效降低株高及茎秆基部节间长度,增加茎秆基部节间充实度,增强木质素合成关键酶活性,提高基部第二节间木质素的含量,从而提升小麦抗倒能力。因此迟播小麦采用270×104株·hm-2密度、225 kg·hm-2施氮量、4∶2∶1∶3氮运筹比例有利于控制倒伏,同时获得较高的产量。  相似文献   

4.
为探究增密减氮栽培途径的可行性及其碳氮代谢调控机制,于2019-2020年以徐麦35为材料,设置不同密肥组合,研究增密减氮对产量和氮效率的调控作用。结果表明,适当减少施氮量,徐麦35的氮素农学效率(NAE)、氮肥偏生产力(PFP)、氮素生理效率(PE)、氮收获指数(NHI)均显著增加。开花期和成熟期的碳氮比(C/N)与产量、NAE、PFP、PE均呈显著正相关。密度240×10·hm-2~300×10·hm-2、施氮量180 kg·hm-2时产量可达到8 500 kg·hm-2以上,高于180×10·hm-2和270 kg·hm-2密肥组合下的产量水平。同时,NAE、PFP、氮肥吸收效率(RE)、和PE分别提高了62.1%~67.9%、57.6%~59.1%、5.1%~14.4%和41.6%~59.4%。返青期施用控释肥(A1)较拔节期施用尿素(A2)的氮肥吸收效率平均提高了6.8%,有利于实现江苏淮北麦区节本增效绿色轻简化栽培。  相似文献   

5.
稻茬晚播小麦高产群体特征分析   总被引:3,自引:0,他引:3  
为给稻茬晚播小麦高产、稳产栽培提供参考,以扬麦23为材料,在稻茬晚播(12月5日,较适播期晚约30~40 d)条件下设置不同密度、氮肥施用量及运筹处理,按产量高低划分为不同产量水平群体(≥6 750 kg·hm-2高产;6 000~6 750 kg·hm-2中产;<6 000 kg·hm-2低产),研究了晚播小麦高产群体的产量及其结构、群体质量特征和光合特性。结果表明,稻茬晚播条件下,产量大于6 750 kg·hm-2小麦高产群体的平均穗数、穗粒数、千粒重分别为516×104·hm-2、36粒、39.8 g。通径分析表明,穗数对产量的影响最大,穗粒数与千粒重的影响较小。稻茬晚播小麦在以下条件下有利于达到6 750 kg·hm-2产量水平:拔节期、开花期茎蘖数在1 350×104·hm-2、700×104·hm-2左右,茎蘖成穗率为38%左右;开花期的干物质积累量为13 500 kg·hm-2左右,成熟期为18 500 kg·hm-2以上,花后干物质积累量大于5 300 kg·hm-2;孕穗期、开花期、乳熟期LAI控制在7.5、5.5、3.5左右;提高花后旗叶SPAD值以及净光合速率,尤其是乳熟期。本试验条件下,稻茬晚播小麦实现高产的最佳组合为密度330×104株·hm-2、施氮量225 kg·hm-2和氮肥运筹6∶0∶2∶2处理。  相似文献   

6.
株行距配置对宽幅播种小麦产量形成的影响   总被引:3,自引:0,他引:3  
为探明不同株行距配置对宽幅播种高产栽培下冬小麦产量形成调控的生理基础,选用高产冬小麦品种泰山28为材料,采用裂区设计,主区为种植密度(150×104、225×104和300×104株·hm-2),副区为播种行距(25、20和15 cm),研究了不同株行距配置下小麦干物质积累、转运及产量的影响。结果表明,在150×104株·hm-2种植密度下,小麦干物质积累量均处于较低水平,产量亦较低;在种植密度225×104株·hm-2配置20或25 cm行距和种植密度300×104株·hm-2配置25 cm行距时,小麦干物质积累量和产量均达到较高水平。在种植密度225万株·hm-2和行距20 cm处理下,小麦开花前营养器官贮藏的同化物向籽粒的转运量、开花后光合产物在籽粒中的积累量及其对籽粒产量的贡献率均显著高于其他处理。泰山28在种植密度225×104株·hm-2配置20或25 cm行距和种植密度300×104株·hm-2配置25 cm行距下均可实现三者的协调,获得较高的产量。因此,合理的种植密度和行距配置是实现宽幅播种高产栽培小麦高产的重要技术途径。  相似文献   

7.
为明确过晚播种(较适播期晚30 d左右)对小麦产量及氮素积累与利用的影响,2018―2020年以长江中下游地区主栽品种扬麦25为供试材料,在11月1日(适期播)和12月1日(过晚播)条件下设置 225×10株·hm-2和375×10株·hm-2两种种植密度,分析过晚播和适期播小麦产量、氮素积累与分配和氮素利用效率的差异。结果表明,与适期播相比,过晚播小麦的播种至出苗阶段延长9 d,出苗至成熟阶段缩短36 d,总生育期缩短27 d,单穗重降低。适期播条件下低密度的小麦产量较高;过晚播小麦在低密度下与适期播相比两年平均减产20.37%,过晚播高密度小麦较适期播低密度处理平均减产12.41%。过晚播条件下增加密度有利于小麦产量提升,平均产量达8 129.80 kg·hm-2。过晚播小麦各生育时期氮素积累量较适播小麦下降,密度增加至375×10株·hm-2能显著提高各生育时期氮素积累量和分蘖至拔节、开花至成熟期的阶段氮素吸收量,与适播低密度处理相比各时期氮素吸收量虽降低,但花后氮素吸收速率与百分比均显著提高,因此过晚播小麦氮肥吸收利用能力显著提升。在本研究条件下,11月1日适期播种时,扬麦25采用密度225×10株·hm-2,产量可达9 000 kg·hm-2以上,氮肥表观利用率在45%左右;12月1日过晚播种时,采用密度375×10株·hm-2,可以协调产量构成三因素,产量达8 000 kg·hm-2以上,氮肥表观利用率在40%左右。  相似文献   

8.
为了揭示光合作用对种植密度及氮素营养的响应机制,以小黑麦东农5305和东农96026为试验材料,采用PAM210调制叶绿素荧光仪测定了小黑麦旗叶的主要叶绿素荧光参数,研究了种植密度及施氮水平对荧光参数的影响。结果表明,适量施氮和降低种植密度(东农5305密度300万株·hm-2,施氮水平75 kg·hm-2;东农96026密度450万株·hm-2,施氮水平150 kg·hm-2)可改善小黑麦叶片光合功能,提高最大荧光产量和PSⅡ光能转换效率及PSⅡ电子传递活性,抑制非辐射能量的耗散。说明合理的种植密度及氮素营养可改善小黑麦光合功能,对东农5305的影响较东农96026大。  相似文献   

9.
播量和施肥对甘啤6号产量和品质的影响   总被引:2,自引:0,他引:2  
为筛选出河西地区啤酒大麦高产优质栽培的适宜播量和施肥组合,以当地啤酒大麦主栽品种甘啤6号为材料,采用正交设计,研究了播量、氮肥、磷肥对该品种产量、籽粒品质及麦芽品质的影响。结果表明,播量、氮肥、磷肥组合对大麦产量、籽粒品质和麦芽品质影响显著。就产量而言,最佳播量为525 万粒·hm-2,施氮最佳水平为180 kg·hm-2,P2O5最佳水平为90 kg·hm-2;对产量的影响表现为播量>氮肥>磷肥。播量在375万~525万粒·hm-2范围内,籽粒蛋白质含量随播量的增加而下降,但播量达到600万粒·hm-2时蛋白质含量又有所增加。籽粒蛋白质含量随着氮肥施用量的增加呈直线上升趋势,适量施磷可以在保证产量的同时,抑制蛋白质含量的增加;对蛋白含量的影响表现为氮肥>播量>磷肥,对千粒重的影响表现为播量>磷肥>氮肥。综合来看,在播量为525万粒·hm-2、施氮量为120 kg·hm-2、P2O5施用量为210 kg·hm-2条件下,甘啤6号具有较高的籽粒产量和较低的蛋白质含量,且千粒重、整齐度和主要麦芽品质均达国家优级水平,因此该处理可作为河西地区甘啤6号实现高产优质的适宜播量与施肥组合。  相似文献   

10.
为明确氮肥运筹对江淮地区稻茬小麦氮素转运、干物质积累、产量及品质的影响,选用当地主栽小麦品种扬麦20,在3种施氮量(180、225、270 kg·hm-2 )和3个氮素基追比例(6∶4、5∶5、4∶6)组合的氮肥运筹模式下,分析了施氮量和基追比例对氮素转运、干物质积累及其贡献率、产量和品质的影响。结果表明,施氮量和基追比例显著影响了小麦氮素在不同器官的分配比率、氮素利用率、氮收获指数、氮素转运效率、转运氮素对籽粒氮素的贡献率、干物质分配量和产量。在相同基追比例下,在施氮量180~270 kg·hm-2范围内增施氮肥,成熟期籽粒干物质分配量、花后干物质积累量及其对籽粒产量的贡献率、产量呈现先升高后下降趋势,以施氮量225 kg·hm-2处理最高,270 kg·hm-2处理次之,180 kg·hm-2处理最低;小麦蛋白质和湿面筋含量呈上升趋势。在相同施氮量下,小麦氮素利用率、成熟期籽粒干物质分配量、花后干物质积累量及产量以基追比例6∶4处理最高。在施氮量225 kg·hm-2、基追比例6∶4时,氮素在成熟期籽粒中的分配比率、氮素利用率和氮收获指数高于其他组合,氮素转运效率、籽粒干物质分配量、花后干物质积累及其对籽粒产量贡献率和产量显著高于其他组合,且籽粒蛋白质含量、湿面筋含量和沉降值符合弱筋小麦标准。从提高产量和氮素利用效率两方面综合考虑,施氮量225 kg·hm-2、基追比例6∶4可作为江淮稻麦轮作区域实现小麦高产优质的最佳氮肥运筹模式。  相似文献   

11.
为探索施氮量和种植密度互作对冬小麦品种石4366生长特性的影响,2020-2021年度在长期氮肥定位试验田通过裂区试验,设置4个施氮水平(施氮量分别为75 kg·hm-2、150 kg·hm-2、225kg·hm-2和300 kg·hm-2,分别用N75、N150、N225和N300表示)和5个种植密度水平(分别为225×104株·hm-2、300×104株·hm-2、375×104株·hm-2、450×104株·hm-2和525×104株·hm-2,分别用D225、D300、D375、D450和D525表示),比较分析了不同处理间该品种旗叶面积、穗部发育、群体动态、秸秆特性和产量的差异。结果表明,施氮量和种植密度对石4366群体、茎秆特性和产量均有显著影响。N75条件下穗长、总小穗...  相似文献   

12.
为给小麦品种镇麦168优质高产栽培中氮肥和种植密度管理提供参考,在基施有机肥15 000kg·hm-2、复合肥(N∶P∶K=15∶15∶15)375kg·hm-2条件下,设置240、285和330kg·hm-2三个追施氮肥水平以及135万、180万、225万、270万和330万株·hm-2五个种植密度(基本苗)水平,研究了追氮量和种植密度对该品种群体质量、产量和加工品质的影响。结果表明,在240~285kg·hm-2范围内,增加追氮量可明显提高镇麦168的籽粒产量、千粒重、成穗率、沉降值和弱化度,但当追氮量达到330kg·hm-2时,有效穗数、穗粒数、籽粒产量、容重、出粉率、吸水率、面团稳定时间增加不显著,千粒重明显降低。在135万~270万株·hm-2范围内,增加种植密度可显著提高有效穗数、籽粒产量、容重、面团形成时间、稳定时间和弱化度,而当种植密度达到330万株·hm-2时,有效穗数、穗粒数、千粒重、籽粒产量、成穗率、容重、面团形成时间、稳定时间和弱化度显著降低,分蘖期和拔节期群体叶面积指数、越冬期和拔节期干物质积累量以及出粉率、沉降值、吸水率增幅不明显。综合来看,镇麦168高产优质栽培的适宜追氮量和密度分别为285kg·hm-2和270万株·hm-2。  相似文献   

13.
密度和施氮量对超高产冬小麦群体质量和产量形成的影响   总被引:2,自引:0,他引:2  
为明确种植密度和施氮量对超高产冬小麦群体质量和产量形成的影响,以冬小麦品种石麦18为材料,于2013-2014年度在河北省藁城市进行了密度(基本苗150万、225万、300万和375万·hm-2)和施氮量(180、240和300kg·hm-2)的二因素裂区试验。结果表明,小麦各生育时期群体总茎(穗)数随密度的增加而增加,但4种密度下都取得了较高的穗数。越冬前至开花期叶面积指数(LAI)和干物质积累量均随密度的增加而增加,但基本苗为150万和225万·hm-2时开花后LAI和干物质积累量都高于基本苗300万和375万·hm-2。各生育时期(除起身期外)不同施氮量之间总茎数差异不显著。干物质积累量随着施氮量增加呈增加趋势,高施氮量下开花后LAI衰减较慢。密度对产量及其构成因素的影响均显著,施氮量仅对千粒重和产量的影响显著;密度与施氮量对千粒重和产量有显著的交互效应。基本苗150万·hm-2、施氮量240~300kg·hm-2处理的小麦产量最高,分别为10 308.65和10 221.98kg·hm-2。因此,建议在低密度下适当增施氮肥。而从节本增效考虑,在高密度下应适当减少氮肥投入,以实现小麦的高产高效。  相似文献   

14.
为筛选出适合淮北平原砂姜黑土区小麦稳产高产栽培的氮密配置,在大田条件下以安农0711(AN0711)和烟农19(YN19)为试验材料,采用裂区设计,设置150×10~4、210×10~4、270×10~4和330×10~4株·hm~(-2)4个种植密度(分别用D1~D4代表),以及135、180、225和270 kg·hm~(-2)4个施氮水平(分别用N1~N4代表),分析了氮密互作对冬小麦冠层结构、光合特性和籽粒产量的影响。结果表明,氮密互作可改善小麦冠层结构,显著影响冠层光合特性。旗叶净光合速率和叶绿素相对含量随着种植密度的增加而降低,而随着施氮量的增加而增加,但施氮量超过225 kg·hm~(-2)时变化均不显著。随着种植密度和施氮量的增加,叶面积指数和冠层截获光合有效辐射显著提高,且在孕穗期和开花期均以D4N4处理最大,灌浆中期均以D3N3处理最大。氮密对籽粒产量有显著的互作效应。在D3N3处理下AN0711和YN19的冠层光合能力和籽粒产量均最高,其中产量分别达到7 866.67和7 400.00 kg·hm~(-2)。在本试验条件下,适宜的种植密度和施氮量分别为270×10~4株·hm~(-2)和225 kg·hm~(-2)。  相似文献   

15.
种植密度对不同小麦品种产量构成及抗倒伏性的影响   总被引:1,自引:0,他引:1  
为了探索雨养农业区不同小麦品种对种植密度的响应特点,以黄淮南部大面积种植品种济麦22、安农0711和烟农19为试验材料,采用两因素裂区设计,设置4个密度处理(225×10~4株·hm~(-2)、375×10~4株·hm~(-2)、525×10~4株·hm~(-2)和675×10~4株·hm~(-2)),对其分蘖特性、产量、穗数、穗粒数、千粒重、茎秆强度、倒伏指数等性状进行测定。结果表明,随处理密度增加,各品种的冬前茎蘖数呈上升趋势,穗粒数和茎秆强度呈下降趋势,倒伏指数呈先升后降趋势,最高茎蘖数、穗数、成穗率及产量等性状变化趋势受品种及试点区域影响。在五铺和大杨试点,当处理密度由225×10~4株·hm~(-2)增加为675×10~4株·hm~(-2)时,济麦22、安农0711和烟农19的冬前茎蘖数(2015年)分别增加75.2%和133.1%、72.3%和72.6%、127.1%和80.1%,且差异均达显著水平;穗粒数(2015和2016年)平均分别减少13.0%和12.6%、12.6%和9.7%、19.9%和14.3%,且在五铺试验点2015年烟农19以及2016年各供试材料在两种处理密度间差异均达到显著水平;茎秆强度(2016年)分别减少36.3%和6.2%、22.8%和21.0%、45.6%和33.2%,且在五铺试验点各供试材料在两种处理密度间差异均达到显著水平。综合来看,本区域小麦生产可通过选择茎秆强度高、抗倒伏的品种,在保证一定穗数的基础上,充分发挥穗粒数和千粒重的潜力,最终获得高产。  相似文献   

16.
淮北地区小麦超高产群体生长特性分析   总被引:2,自引:0,他引:2  
为了解安徽省淮北地区超高产小麦群体生长指标与产量之间的关系,于2011-2014年度,以当地种植面积较大、具有超高产潜力的小麦品种济麦22和皖麦52为试验材料,研究了播期和播种密度对小麦群体生长指标和产量的影响。结果发现,年度间比较,2013-2014年度的小麦产量较高;播期为10月3日时,两个小麦品种的产量随密度的增加呈先增加后降低趋势,均以密度为210×104株·hm-2处理产量最高;播期为10月15日时,两个小麦品种的产量随密度增加而增加,均以密度为330×104株·hm-2处理产量最高。早播(10月3日)处理的小麦,叶面积持续时间较长;播期相同时,小麦的叶面积持续时间随密度增加而增加,叶面积指数随密度增加而减少,净同化率随密度增加而增加。小麦群体生长率的增加,主要来源于叶面积指数的增加。相关性分析表明,小麦籽粒产量与其叶面积持续时间和群体生长率的相关性极显著,与净同化率呈显著负相关。本试验条件下,两个小麦品种均以10月3日播种、密度为210×104株·hm-2处理的产量最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号