首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
农学   1篇
综合类   2篇
农作物   2篇
  2023年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
小麦穗部性状特别是穗顶部、基部结实性对穗粒数的建成及产量具有重要影响。为给QTL精细定位、基因克隆及穗部性状分子标记的开发和辅助选择奠定基础,本研究以扬麦17与宁麦18杂交获得的310个F2群体及其衍生的F2:3家系为材料,构建了一个由215个SSR标记组成的全长为1 717 cM的遗传连锁图谱,共覆盖19条染色体(1D和6A未涉及),标记间平均距离为7.99 cM,并对6个穗部性状进行QTL定位。利用复合区间作图法共检测出22个QTL,分布在1A、1B、2B、2D、3B、3D、4B、5A、5B和7A染色体上。其中,穗顶部结实粒数QTL有7个,穗基部结实粒数QTL有2个,穗长QTL有5个,总小穗数QTL有3个,不育小穗数QTL有2个,穗粒数QTL有3个,表型贡献率为2.56%~13.66%。控制穗顶部和基部结实粒数QTL的增效基因来源于宁麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   
2.
Puccinia triticina引起的叶锈病是小麦主要病害之一, 引进种质C615具有叶锈病成株期抗性, 但其抗病性遗传机制尚不清楚。本研究以抗病亲本C615与高感叶锈病亲本宁麦18构建的F2:7代重组自交系群体为材料, 利用337对多态性SSR标记构建遗传连锁图谱, 结合2016、2017连续两年的叶锈病鉴定结果进行复合区间作图, 结果在1BL、2DS、3BS、4DL和6BS染色体上共发现了5个抗性QTL, 暂命名为QLr.njau-1BLQLr.njau-2DSQLr.njau-3BSQLr.njau-4DLQLr.njau-6BS。其中, QLr.njau-1BLQLr.njau-3BSQLr.njau-4DL在两年均被检测到, 分别解释10.1%~15.7%、10.9%~13.5%和8.2%~9.0%的表型变异; 另2个QTL只在一年被检测到, 解释6.2%和9.2%的表型变异。除QLr.njau-2DS外的4个抗性QTL均来源于抗病亲本C615。QLr.njau-1BLQLr.njau-4DL分别与已报道的慢病性基因Lr46Lr67在同一区域, QLr.njau-3B可能为一个新的抗叶锈病QTL。此外, 本研究在C615/扬麦13 (轮回亲本)BC4F5回交群体中选出了15个农艺性状优良且抗叶锈病的株系, 利用与C615所含抗性QTL紧密连锁的7个SSR标记对其进行基因型检测, 结果显示所有这15个株系均含有来自C615的抗性QTL, 且有3个株系聚合了全部抗性位点, 表明C615可作为抗源亲本用于高产、抗病育种。本研究结果将为分子标记选育抗叶锈品种提供材料和技术支撑。  相似文献   
3.
23个小麦品种春化特性主成分分析及聚类分析   总被引:3,自引:0,他引:3  
为了合理利用小麦种质资源,给小麦新品种选育提供材料,收集了国内七大小麦生态区23份品种为试验材料,对茎蘖数、叶绿素含量、苗期株高、拔节期、抽穗期、开花期、成熟期、千粒质量、成穗数、穗粒数10个农艺性状进行主成分及聚类分析。主成分分析表明,从10个农艺性状中可提取拔节期生长因子、开花期生长因子、成穗数产量因子、抽穗期生长因子、千粒质量产量因子共5个主成分,占其总信息量的91.2%。利用这5个主成分因子为综合指标进行系统聚类,在遗传距离为26.64的水平上将23个品种划分成4个类群,即春性弱春性类、冬性半冬性类、强春性类、强冬性类,春化生育特性相近的大部分被分在1个类群,同时表明主成分中以拔节期、抽穗期、开花期构成生长因子,千粒质量、成穗数构成产量因子,较能真实地表现春化生育特性,尤其以拔节期为主效应,至抽穗期、开花期等快速生长阶段表现更具反映春化发育特性的本质。  相似文献   
4.
【目的】筛选适合江苏种植的优质啤酒大麦品种。【方法】以扬州大学大麦研究所培育出的8份优异啤酒大麦品种为材料,测定其粒长、粒宽及千粒重等籽粒外观品质性状以及浸出物、α-氨基氮、糖化力、可溶性氮、蛋白质含量、库尔巴哈值等麦芽品质性状。【结果】参试品种籽粒品质均达国家优级标准;参试品种的浸出物含量以及库尔巴哈值均较低,麦芽蛋白质含量、α-氨基氮、糖化力含量均较高。【结论】扬农啤9号的综合啤麦品质最好,可作为江苏优质啤酒大麦原料生产品种。  相似文献   
5.
为了发掘新的抗赤霉病基因,以抗赤霉病新种质N553与扬麦13构建的包含184个家系的重组自交系(RILs)为材料,利用217对在双亲间具有多态性的分子标记构建遗传连锁图谱,利用该图谱对小穗密度、株高及赤霉病抗性进行QTL检测,并分析了小穗密度及株高与赤霉病抗性的相关性。结果表明,本研究共检测到5个赤霉病抗性相关QTL,其中1个效应较大的QTL位于2D染色体上,位于标记wmc18-cfd233之间,可解释8.17%~11.42%的表型变异;在3B染色体短臂上检测到1个QTL,位于标记barc102-gwm533之间,可解释5.33%~42.96%的表型变异。QFhb.jaas-2DS与QFhb.jaas-3BS聚合可显著增强小麦赤霉病抗性。另外3个QTL贡献率小于10%,分别位于染色体2B、3B、4A上。检测到与小穗密度相关的QTL有1个,位于3B染色体上,可解释5.36%~6.08%的表型变异。检测到与株高相关的QTL有5个,分别位于染色体4A、7A、5B、6B上,可解释5.2%~8.93%的表型变异。小穗密度与赤霉病抗性呈正相关,株高与抗扩展抗性无相关性,与抗侵染抗性呈负相关。结合以上QTL检测及相关性分析结果可知,QFhb.jaas-3BL可能不是赤霉病抗性位点。因此,包括QFhb.jaas-3BL在内的贡献率小于10%且仅在单一环境下检测到的3个赤霉病抗性相关QTL需进一步进行多年多点试验。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号