首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
  国内免费   1篇
  9篇
综合类   5篇
农作物   2篇
畜牧兽医   6篇
植物保护   3篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2003年   2篇
  2002年   1篇
  1981年   1篇
排序方式: 共有25条查询结果,搜索用时 187 毫秒
1.
This research study evaluated the effect of different additives on the bait consumption by Indian crested porcupine, a serious forest and agricultural pest, under field conditions. Different additives (saccharin, common salt, bone meal, fish meal, peanut butter, egg yolk, egg shell powder, yeast powder, mineral oil and coconut oil) at 2 and 5% each were tested for their relative preference, using groundnut–maize (1:1) as basic bait. All the additives were tested under a no‐choice test pattern. For control tests, no additive was mixed with the basic bait. Saccharin at 5% concentration significantly enhanced the consumption of bait over the basic bait, while 2% saccharin supplemented bait resulted in a non‐significant bait consumption. All other additives did not enhance the consumption of the bait material; rather, these worked as repellents. However, the repellency was lowest with the common salt, followed by egg yolk, egg shell powder, bone meal, peanut butter, mineral oil, fish meal and yeast powder, while coconut remained the most repellent compound. The present study suggested that groundnut–maize (1:1) supplemented with 5% saccharin was the preferred bait combination, and can be used with different rodenticides for the management of Indian crested porcupine.  相似文献   
2.
小麦分泌的有机酸影响钙质土中锌的释放   总被引:1,自引:0,他引:1  
Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.  相似文献   
3.
Recently, drought-induced damaging impact in reducing the crop growth and development is drastically ranked at the top under various abiotic stresses. And especially water stress at the reproductive growth stages termed as terminal drought has become a severe threat for mungbean productivity. To mitigate the drought stress condition, "bio-priming" has emerged as a newly agronomic and sustainable technique in improving the mungbean production. A 2-year field study during Kharif season 2017–2018 was conducted to investigate the efficacy of rhizobacteria seed priming in mungbean(AZRI mung-06), at Agronomic Research Area, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan. The experiment comprised two factors containing F_A(seed treatments, control(dry seeds), hydro-priming, silicon(Si)-priming, and bio-priming(mixture strains of Pseudomonas fluorescens+Rhizobium phaseoli)) and F_B(irrigation water-regimes at various growth stages including leaf formation(L), stem elongation(S)+flowering(F)+pod formation(P) containing treatments are normal irrigation(I_(L+S+F+P)) and terminal drought stress(I_(F+P))). All the treatments were arranged in randomized complete block design under factorial design and were replicated thrice. Results indicated that the exposure of drought stress at flowering and pod formation stages hampered the morpho-physiological growth and yield of mungbean. Nevertheless, seed priming treatments particularly bio-priming were effective in alleviating the detrimental effects of drought stress. Bio-priming significantly increased the yield and yield components(seeds/plant, 1 000-grain weight and harvest index) of mungbean and regulated the activities/levels of antioxidants(superoxide dismutase, catalase, peroxidase, ascorbic acid, and total phenolics) under drought stress. Compared with the control, bio-priming increased the seed yield of mungbean by 8–12% under normal as well as drought stress conditions during both years of study. Bio-priming also improved the nutrient uptake behavior followed by Si-and hydro-priming treatments under terminal drought stress. The study emphasized the effectiveness of bio-priming as dual seed treatment method may be helpful for vigorous germination of mungbean production along with plant tolerance against terminal drought stress. Among the various treatments, plants treated with bio-priming technique compensated the grain yield due to having strong antioxidant defense system and better nutrient uptake behaviour under terminal drought stress. Economic analysis also concluded that bio-priming is the easiest, cost-effective, friendly, and sustainable approach for the maximization of the mungbean production.  相似文献   
4.
The catabolism of arginine (Arg) by mixed rumen bacteria (B), mixed rumen protozoa (P), and their mixture (BP) was quantitatively investigated in an in vitro system in order to confirm the metabolic pathway of Arg and provide basic information for enzymatic and molecular studies as well as an understanding of the quantitative distribution of metabolites. Rumen microbial suspensions (B, P, and BP) collected from fistulated goats were anaerobically incubated with or without 1 mmol/L Arg at 39°C for 12 h. Arg and other related compounds such as citrulline (Cit), ornithine (Orn), proline (Pro) and 5‐aminovaleric acid (5AV) in both supernatant and hydrolyzates of B, P, and BP suspensions were analyzed by HPLC. The metabolic pathways of Arg in mixed rumen bacteria and mixed rumen protozoa were considered to be as follows: rumen bacteria, Arg → Cit → Orn → Pro → 5AV → VFAs + NH3; rumen protozoa, Arg → Cit → Orn → Pro → 5AV. The disappearance of Arg (1 mmol/L) was approximately 52.9 and 88.2% in B, 33.9 and 55.6% in P, and 52.8 and 85.2% in BP during 6 and 12 h incubations, respectively. When expressed in units of ‘per gram (g) of microbial nitrogen (MN)’, the net degradation rate of Arg in BP (50.3 µmol/g MN/h) was approximately 46% lower than that of B during a 12 h incubation period. The presence of protozoa tended to inhibit the production of Orn from Cit and the production of 5AV from Pro which were thought to be rate‐limiting steps of Arg metabolism in rumen microorganisms. As a result, protozoa appeared to have a saving effect on Arg metabolism, that is, protozoa protected Arg from wasteful exhaustion in the rumen.  相似文献   
5.
6.
Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-dominated grassland respond to summer rain events,an LI 6 400 gas exchange system was used to measure the leaf gas exchange and plant canopy chambers were used to measure net ecosystem CO2exchange(NEE) and ecosystem respiration(Reco), which were made sequentially during periods before rain(dry) and after rain(wet). Gross ecosystem photosynthesis(GEP) was estimated from NEE and Reco fluxes, and light use efficiency parameters were estimated using a rectangular hyperbola model. Prior to the monsoon rain, grassland biomass was non-green and dry exhibiting positive NEE(carbon source) and low GEP values during which the soil water became increasingly scarce. An initial rain pulse(60 mm) increased the NEE from pre-monsoon levels to negative NEE(carbon gain) with markedly higher GEP and increased green biomass. The leaf photosynthesis and leaf stomatal conductance were also improved substantially. The maximum net CO2uptake(i.e.,negative NEE) was sustained in the subsequent period due to multiple rain events. As a result, the grassland acted as a net carbon sink for 20 d after first rain. With cessation of rain(drying cycle), net CO2 uptake was reduced to lower values. High sensitivity of this grassland to rain suggests that any decrease in precipitation in summer may likely affect the carbon sequestration of the semiarid ecosystem.  相似文献   
7.
An in vitro study was conducted to quantitatively investigate the metabolism of pipecolic acid (Pip), a neuromodulator, by mixed rumen bacteria (B), mixed rumen protozoa (P), a combination of B and P (BP), species‐enriched rumen protozoal suspension (Polyplastron sp., Diploplastron sp., entodinia and Entodinium caudatum) and pure cultures of several isolates of rumen bacteria (Prevetolla bryantii, Prevetolla albensis, Streptococcus bovis, Veillonella parvula, Megasphaera elsdenii and Ruminococcus albus). Only P produced Pip from L‐lysine (1.0 mmol/L L‐Lys) at a rate of 83.5 ± 1.6 µmol/L/h and even in BP, Pip was produced from L‐Lys by P and increased at a rate of 31.2 ± 3.8 µmol/L/h. Pip production by P was highest when the substrate (L‐Lys) concentration was 6 mmol/L and then the rate was 580 ± 36 µmol/L/h. Pipecolic acid production by P suspension enriched with different species of protozoa showed that Polyplastron sp. had the highest Pip production rate of 0.907 ± 0.092 µmol/L/mg protozoal protein per h, and Diploplastron sp. had the lowest rate of 0.55 ± 0.13 µmol/L/mg protozoal protein per h. The addition of D‐Lys (1.0 mmol/L) as a substrate to the P suspension revealed that P were also able to produce Pip from D‐Lys, though at a lower rate (1/3) compared with L‐Lys (1.0 mmol/L), suggesting the presence of epimerases in P. It was confirmed that B were unable to produce Pip from L‐ or D‐Lys. Only B degraded Pip (1.0 mmol/L) after a lag phase at a rate of 56.0 ± 1.5 µmol/L/h. The B suspension was able to degrade D‐Lys, though the products were not identified. Pip degradation by pure culture of some species of rumen bacteria showed that P. bryantii and R. albus had the highest rate followed by P. albensis, S. bovis and M. elsdenii with a low rate of Pip degradation. Veillonella parvula showed no ability to degrade Pip. The results suggest that a fairly large proportion of rumen‐produced Pip is likely to be absorbed by the host animal before degradation by rumen bacteria.  相似文献   
8.
Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity. Among various abiotic factors affecting plant photosynthesis, light serves as an important factor that drives carbon metabolism in plants and supports life on earth. The two components of light(light quality and light intensity) greatly affect plant photosynthesis and other plant's morphological, physiological and biochemical parameters. The response of plants to different spectral radiations and intensities differs in various species and also depends on growing conditions. To date, much research has been conducted regarding how different spectral radiations of varying intensity can affect plant growth and development. This review is an effort to briefly summarize the available information on the effects of light components on various plant parameters such as stem and leaf morphology and anatomy, stomatal development, photosynthetic apparatus, pigment composition, reactive oxygen species(ROS) production, antioxidants, and hormone production.  相似文献   
9.
The degradation of soil fertility and quality due to rapid industrialization and human activities has stimulated interest in the rehabilitation of low-fertility soils to sustainably improve crop yield. In this regard, biochar has emerged as an effective multi-beneficial additive that can be used as a medium for the amelioration of soil properties and plant growth. The current review highlights the methods and conditions for biochar production and the effects of pyrolysis temperature, feedstock type, and retention time on the physicochemical properties of biochar. We also discuss the impact of biochar as a soil amendment with respect to enhancing soil physical (e.g., surface area, porosity, ion exchange, and water-holding capacity) and chemical (e.g., pH, nutrient exchange,functional groups, and carbon sequestration) properties, improving the soil microbiome for increased plant nutrient uptake and growth, reducing greenhouse gas emissions, minimizing infectious diseases in plants, and facilitating the remediation of heavy metal-contaminated soils. The possible mechanisms for biochar-induced amelioration of soil and plant characteristics are also described, and we consider the challenges associated with biochar utilization. The findings discussed in this review support the feasibility of expending the application of biochar to improve degraded soils in industrial and saline-alkali regions, thereby increasing the usable amount of cultivated soil. Future research should include long-term field experiments and studies on biochar production and environmental risk management to optimize biochar performance for specific soil remediation purposes.  相似文献   
10.
Water extracts that were obtained from the flowers and phyllodes of Acacia melanoxylon were used to determine their allelopathic potential in relation to the germination and seedling growth of the native species, cocksfoot (Dactylis glomerata), perennial ryegrass (Lolium perenne), and common sorrel (Rumex acetosa), as well as a general biotest specie, lettuce (Lactuca sativa), in laboratory bioassays. The flowers and phyllodes of A. melanoxylon were soaked separately in distilled water in a ratio of 1:1 (w/v) for 24 h in order to prepare the aqueous extracts. Distilled water was used as the control. The seeds of the target species were germinated in Petri dishes and counted daily for up to 7 days. The A. melanoxylon flower extract (100%, 75%, and 50%) decreased the seed germination of D. glomerata, R. acetosa, L. perenne, and L. sativa. The flower extract caused the most reduction in the germination index and germination speed in D. glomerata, L. perenne, and L. sativa. The mean LC50 value of the A. melanoxylon flower and phyllode extracts in relation to the germination inhibition of L. perenne was 43% and 41%, respectively, 40% and 38%, respectively, in R. acetosa, and 53% and 41%, respectively, in L. sativa. All four concentrations of the flower extract proved to be more phytotoxic than the phyllode extract, reducing the root length of all four species, while the phyllode extract decreased the root length of L. perenne and R. acetosa at the 100% concentration. The L. perenne and D. glomerata grass seeds were more sensitive regarding germination, as compared to L. sativa and R. acetosa. The flower aqueous extract of A. melanoxylon was more phytotoxic, as compared to the phyllode aqueous extract, even at the lowest concentration (25%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号