首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
有机配体、竞争阳离子和pH对土壤中Zn分解的影响   总被引:1,自引:0,他引:1  
A series of experiments were conducted to examine the interactive effects of an organic ligand, a competing cation, and pH on the dissolution of zinc (Zn) from three California soils, Maymen sandy loam, Merced clay, and Yolo clay loam. The concentrations of soluble Zn of the three soils were low in a background solution of Ca(NO3)2. Citric acid, a common organic ligand found in the rhizosphere, was effective in mobilizing Zn in these soils; its presence enhanced the concentration of Zn in soil solution by citrate forming a complex with Zn. The ability of Zn to form a complex with citric acid in the soil solution was dependent on the concentration of citric acid, pH, and the concentration of the competing cation Ca^2+. The pH of the soil solution determined the extent of desorption of Zn in solid phase in the presence of citric acid. The amounts of Zn released from the solid phase were proportional to the concentration of citric acid and inversely proportional to the concentration of Ca(NO3)2 background solution, which supplied the competing cation Ca^2+ for the formation of a complex with citrate. When the soil suspension was spiked with Zn, the adsorption of Zn by the soils was retarded by citric acid via the formation of the soluble Zn-citrate complex. The dissolution of Zn in the presence of citric acid was pH dependent in both adsorption and desorption processes.  相似文献   

2.
A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg-1 soil). Results indicated that plant growth of the two cultivars was not adversely affected at soil Zn level≤8 mmol kg-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 /μg g-1 in Aris and 583.9μg g-1 in Tede in response to 16 mmol Zn kg-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.  相似文献   

3.
Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl^- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Cl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.  相似文献   

4.
Release of Soil Nonexchangeable K by Organic Acids   总被引:4,自引:0,他引:4  
The amounts of soil nonexchangeable K extracted with 0.01mL/L oxalic acid and citric acid solutions and that with boiling 1mL/L HNO3 for ten minutes were remarkably significantly correlated with each other,and the amount extracted with the oxalic acid solution was higher than that with the citric acid solution.The soil nonexchangeable K release was comprised of two first-order kinetic processes.The faster one was ascribed to the interlayer K in outer sphere,while the slower one to that in inner sphere.The rate constants of the soil nonexchageable K were significantly correlated with the amounts of nonexchangeable K ex tracted with boiling 1mL/L HNO3 for ten minutes.Study on the fitness of different kinetic equations indicated that the first-order,parabolic diffusion and zero-order equations could all describe the release of soil nonexchangeable K well,but Elovich equation was not suitable to describe it.  相似文献   

5.
The elevated solubility of zinc(Zn) in acid sulfate paddy soils can limit rice production and pose a risk of environmental pollution.However, little attention has been paid to the ligand-controlled release of Zn in these soils. Here we quantified the rate of ligandcontrolled Zn release in Thai acid sulfate paddy soils, using ethylenediaminetetraacetic acid as the extractant. Sequential extractions were performed to obtain quantitative information on Zn fractions contributing to the ligand-controlled mechanisms. The amount of Zn released within 192 h varied significantly(8–43 mg kg~(-1)), which corresponded to 12%–40% of the total soil Zn, indicating that Zn solubility in most soils was relatively low and that Zn mainly occurred as residual phases. The kinetics of Zn release was well described by the power function model(r = 0.65–0.99, median = 0.87). The magnitude of initial Zn release(coefficient a) was significantly(P 0.05) related to the aqua regia-soluble Zn. Easily mobile Zn, organically bound Zn, and Zn associated with Fe and Mn oxides also contributed to the ligand-controlled release mechanisms to various degrees. Our results provide a systematic understanding of Zn fractions and release from acid sulfate paddy soils, the dynamics of which have a significant influence on the availability, phytoextraction, and mobility of Zn in terrestrial and engineered environments.  相似文献   

6.
Based on recent mining rates and the exhaustion of global phosphorus(P)reserves,there is a need to mobilize P already stored in soils,and its recovery from secondary resources such as Ca-and Fe-phosphates is important.The Ca-phosphate hydroxyapatite forms a good fertilizer source,while vivianite is formed in waterlogged soils and sediments.During sludge treatment,the formation of vivianite has been identified,being mainly Fe-phosphate.Long-term P release from both hydroxyapatite and vivianite was studied using different inorganic(CaCl2 and CaSO4)and organic(citric and humic acid)reagents during batch experiments.Reagents CaCl2 and CaSO4 represent the soil solution,while citric and humic acids as organic constituents affect P availability in the rhizosphere and during the process of humification.Additionally,the flow-through reactor(FTR)technique with an infinite sink was used to study the long-term P release kinetics.The cumulative P release was higher by organic acids than by inorganic compounds.The cumulative P release rates were higher in the FTR with CaCl2 as compared to the batch technique.The infinite sink application caused a continuously high concentration gradient between the solid and liquid phases,leading to higher desorption rates as compared to the batch technique.The predominant amount of the total P released over time was available for a short term.While inorganic anion exchange occurred at easily available binding sites,organic acids affected the more heavily available binding sites,which could be embedded within the mineral structure.The results showed that organic compounds,especially citric acid,play a superior role as compared to the inorganic constituents of the soil solution during the recovery of already stored P from the tertiary phosphates vivianite and hydroxyapatite.  相似文献   

7.
施用碱稳定固体的酸性土壤的Cu和Zn的形态分布   总被引:2,自引:1,他引:2  
LUO Yong-Ming 《土壤圈》2002,12(2):165-170
Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewagesIudge biosolids was conducted in order to assess metal bioavailability and environmental mobility soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution wasdetermined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used forextraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soilsolution existed in different fractions with variable lability and metals in the soil solid phase were also presentin various chemical forms with potentially different bioavail ability and environmental mobility Alkaline-stabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractionsboth in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.  相似文献   

8.
利用方式和土壤肥力对土壤团聚体和养分的影响   总被引:6,自引:0,他引:6  
The size distribution of water-stable aggregates and the variability of organic C, N and P contents over aggregate size fractions were studied for orchard, upland, paddy, and grassland soils with high, medium, and low fertility levels. The results showed that > 5 mm aggregates in the cultivated upland and paddy soils were 44.0% and 32.0%, respectively, less than those in the un-tilled orchard soil. Organic C and soil N in different size aggregate fractions in orchard soil with high fertility were significantly higher than those of other land uses. However, the contents of soil P in different size aggregates were significantly greater in the paddy soil as compared to the other land uses. Soil organic C, N and P contents were higher in larger aggregates than those in smaller ones. The amount of water-stable aggregates was positively correlated to their contribution to soil organic C, N and P. For orchard and grassland soils, the > 5 mm aggregates made the greatest contribution to soil nutrients, while for upland soil, the 0.25-0.053 mm aggregates contributed the most to soil nutrients. Therefore, the land use with minimum disturbance was beneficial for the formation of a better soil structure. The dominant soil aggregates in different land use types determined the distribution of soil nutrients. Utilization efficiency of soil P could be improved by converting other land uses to the paddy soil.  相似文献   

9.
Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K^+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L^-1 oxalic acid was similar to that using 1 mol L^-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y = a + blogc, while the best-fit kinetic equation of K release was y = a + b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite 〉 phlogopite 〉〉 muscovite 〉 microcline and for soils it was in the order: black soil 〉 calcareous alluvial soil 〉 red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K^+ adsorption and increased the soil K^+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.  相似文献   

10.
The supply of cadmium from soil to plant roots mainly depends on the diffusion prooess.This work was conducted to study the effects of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce‘s isotopic labelling method.Cadmium diffusion coefficients varied from 10^-7to 10^-9 cms^2-1.Higher values were observed in acid sandy soils and lower values in calcareous clay soils.Liming an acid soil resulted in a substantial decrease of D.Addition of cadmium as nitrate salt generally increased D,while addition of sewage sludge and organic matter resulted in a significant decrease of cadmium diffusion.The rhizospheric activity also induced a moderate reduction in D.The relationships between D(10^-9cms^2-1)on the on hand and soil pH.moisture(Mc,g kg^-1) ,organic matter(OM,g kg^-1),clay(Cy,gkg^-1)and cadmium content(Cd,mgkg^-1) on the other were obtained by the multiple regression:D=182.1-29.91pH 0.210Mc-0.303OM 0.011Cy 1.64Cd(R^2=0.859,n=22).  相似文献   

11.
Adsorption and desorption reactions of zinc (Zn) in soils control its availability to plants. In the present investigation, time-dependent Zn release was evaluated using three organic acids [diethylenetriaminepentaacetic acid (DTPA), citric acid, and maleic acid] to depict the Zn fraction controlling Zn release rate from slightly calcareous to calcareous soils. Eight surface and two subsoil samples of selected soil series varied in their physicochemical properties, amount of Zn held in different chemical pools, and Zn-retention capacities (21–61%). Each soil was extracted for a total period of 24 h at 1:10 soil/extractant suspension ratio using 0.005 M DTPA. The time-dependent parabolic diffusion model best described the Zn release in six consecutive extractions. Soils differed in cumulative Zn extracted (1.09–3.81 mg kg?1 soil) and Zn release rate. Under similar conditions, three soils differing in Zn-retention capacities were also extracted with five different concentrations (0.01–0.0001 M) of citric and maleic acids. Although both maleic and citric acids released soil Zn at greater rates and in greater amounts than DTPA, maleic acid was more efficient. Soil Zn bound to amorphous iron (Fe) + manganese (Mn) oxides was the main Zn pool that controlled Zn release characteristics.  相似文献   

12.
Rate of zinc (Zn) release from solid to solution phase by organic acids can influence Zn availability in calcareous soils. The objective of the present study was to investigate the effect of different concentrations (1.1, 2.2, and 3.3 mM) of oxalic acid and citric acid on the kinetic release of Zn from two calcareous soils from Eastern Iran. The two organic acids showed significant difference in Zn release from studied soils. Cumulative Zn release during 72 h ranged from 5.85 to 10.4 mg kg?1 in soil 1 and ranged from 8.7 to 16.9 mg kg?1 in soil 2 using different concentrations of oxalic acid. The amount of cumulative Zn release after 72 h in soil 1 ranged from 13.65 to 28.77 mg kg?1 and from 17.63 to 23.13 mg kg?1 when different concentrations of citric acid was used. In general, Citric acid released 38% more Zn from soils than oxalic acid. The release of Zn from soils increased with citric acid concentration but decreased with increasing of oxalic acid concentrations in the solution. The simplified Elovich equation best described Zn release as a function of time (r2 = 0.93 and SE = 0.78). From the present study, Zn release from soils can be limited by the higher concentration of oxalic acid, while citric acid is suitable for enhancing soil lability of Zn.  相似文献   

13.
低分子量有机酸对石灰性土壤有机磷组成及有效性的影响   总被引:6,自引:2,他引:4  
为探索提高土壤磷素有效性的途径,采用室内培养的方法,研究不同有机酸对土壤速效磷含量及有机磷组分的影响。结果表明,添加有机酸后土壤速效磷含量发生显著变化,其中草酸处理下土壤速效磷含量显著高于其他处理,而柠檬酸和苹果酸对土壤速效磷含量具有抑制作用,其活化量为负值;随着培养时间的延长,速效磷含量缓慢降低。速效磷含量随着草酸浓度的升高而升高,随着苹果酸、柠檬酸浓度的升高而降低;有机酸处理后,土壤活性、中活性、中稳性有机磷升高,高稳性有机磷降低,这说明有机酸能促进土壤有机磷由有效性低的形态逐步向有效性高的形态转化,其中草酸的作用效果总体上较柠檬酸和苹果酸强。  相似文献   

14.
低分子量有机酸对土壤磷活化影响的研究   总被引:14,自引:3,他引:11  
研究两种低分子量有机酸(柠檬酸和苹果酸)对土壤磷活化影响,并用修正的Hedley法测定土壤磷活化前后磷组分的变化。结果表明,低分子量有机酸能持续活化土壤磷,活化强度随低分子量有机酸浓度的增大而增强,并且柠檬酸活化土壤磷的能力强于苹果酸。低分子量有机酸能促进作物有效态无机磷组分(H2O-P和NaHCO3-Pi)的释放;同时还促进有机磷组分(NaHCO3-Po和NaOH-Po)的矿化。在低分子量有机酸浓度达到0.5 mmol/L以上时,其对土壤磷组分的活化量的顺序为:NaOH-Pi HCl-P NaHCO3-Pi H2O-P,即铁铝结合态磷 钙结合态磷 作物有效态磷。低分子量有机酸活化土壤磷的过程中伴有大量铁、铝释放,且铁或铝的释放量与磷活化量之间显著正相关(P0.05)。说明铁、铝结合态磷是低分子量有机酸活化土壤磷的主要磷源,并且其活化机制可能与铁、铝结合态磷的螯合溶解有关。  相似文献   

15.
Zinc (Zn) is a vital plant nutrient that is widely deficient in Thai cultivated calcareous soils. The chemical fractionation and adsorption of Zn are among the most important solid- and liquid-phase interactions that determine the retention of Zn in the soils. This study aimed to investigate the fractionation and adsorption isotherms of Zn in cultivated Thai calcareous soils. The results of sequential extractions showed that Zn is mainly distributed in residual fractions followed by organic-bound, iron and manganese oxides-bound, carbonate-bound, and exchangeable Zn, respectively. Zinc adsorption was well fitted by the Langmuir and Freundlich isotherms. Thai calcareous soils had high Zn adsorption capacity. Soil pH, organic carbon, calcium carbonate, cation exchange capacity, and extractable calcium were the major soil properties that affected the Zn adsorption isotherms in these soils. Zinc hydroxide was the solid precipitate and the Zn hydroxide ion (ZnOH+) was the dominant Zn ion in alkaline equilibrium solution.  相似文献   

16.
Adsorption and release are the most influential reactions controlling zinc (Zn), manganese (Mn) and copper (Cu) availability in soils. Characteristics of native Zn, Mn and Cu release by ethylenediaminetetraacetic acid (EDTA) in two calcareous soils for periods from 1 min to 24 h were studied. The pattern of Zn, Mn and Cu release from both soils fitted well with power function, Elovich and parabolic diffusion models. The magnitude and rate of release was greatest for Mn, followed by Zn and Cu, respectively. This trend suggests a higher ability of the studied soils to replenish soil solution Mn, compared with Zn and Cu. The results showed that higher Mn release in clay soil compared with sandy loam soil was considerably related to higher initial Mn release rates in the former compared with the latter. However, Cu release rates of the two soils at initial times were not significantly different. Higher Cu release in clay soil was, therefore, attributed tohigher Cu release rates at subsequent time intervals. It is assumed that the different Zn release rates of these soils were due to consistent differences in Zn release rates throughout the release periods.  相似文献   

17.
Calcareous soils are frequently characterized by the low bioavailability of plant nutrients. Consequently, many vascular plant species are unable to successfully colonize calcareous sites and the floristic composition of calcareous and acid silicate soils has been shown to differ markedly. The root exudation of oxalate and citrate has been suggested to play a pivotal role in same nutrient acquisition mechanisms operating in calcareous soils. The aim of this study was therefore to investigate the nutrient extraction efficiency of three individual organic acids commonly identified in root exudates, i.e. citric, malic and oxalic acid. Our results clearly demonstrate the context dependent nature of nutrient release by organic acids. The degree of P extraction was highly dependent on which organic acid was added, their concentration and pH, and their contact time with the soil. P is generally more efficiently extracted by organic acids at a high pH and follows the series oxalate>citrate>malate. The opposite relationship between pH and extraction efficiency was apparent for most other cations examined (e.g. Zn, Fe), which are more efficiently extracted by organic acids at low pH. A serious constraint to the ecological importance of organic acid exudation in response to P deficiency is, however, their very low P mobilization efficiency. For every mol of soil P mobilized, 1000 mol of organic acid has to be added. It can, however, be speculated that in a calcareous soil with extremely low P concentrations it is still beneficial to the plants to exude organic acids in spite of the seemingly high costs in terms of carbon.  相似文献   

18.
Experiments under laboratory and greenhouse conditions were conducted to investigate the response of wheat to Zn application in five loess-derived alkaline calcareous soils and to assess the contribution of Zn in various soil fractions on its uptake by plants. Zinc in soil extracted by different reagents was also determined. Total Zn ranged from 58 to 81 mg/kg. On an average 45% of total Zn in all soil fractions was associated with sand, silt and clay. Whereas silt alone held 33% of total Zn among soil fractions in the five soils. Ammonium acetate extractable and acid residual Zn (Sand, silt and clay) explained 98% of variation of Zn in plants, and 70 or 75% of Zn in the AB-DTPA extract and DTPA extract respectively. Application of 10 mg Zn/kg soil significantly (P < 0.01) increased plant shoot dry weight, Zn concentration and total Zn content in plants over control. Concentration of Zn in plants was significantly positively correlated with Zn extracted with DTPA and AB-DTPA in soils.  相似文献   

19.
ZHENG Yi  ZHANG Fu-Suo 《土壤圈》2000,10(4):333-338
A three-compartments rhizobox was designed and used to study the low-molecular-weight organic acids in root exudates and the root apoplastic iron of “lime-induced chlorosis“ peanut grown on a clacareous soil in realtion to different soil moistrue conditions.Results showed that chlorosis of peanuts developed under condition of high soil mositure level(250 g kg^-1),while peanuts grew well and chlorosis did not develop when soil moisture was managed to a normal level(150 g kg^-1).The malic acid maleic acid and succinic acid contents of chlorotic peanut increased by 108.723,0.029,and 22.446ug cm^-1 ,respectively,compared with healthy peanuts.The content of citric acid and fumaric acid also increased in root exudates of chlorotic peanuts.On Days 28 and 42 of peanut growth,the accumulation of root apoplastic iron in chlorotic peanuts was higher than that of healthy peanuts.From Day 28 to Day 42,the mobilization percentages of chlorotic peanuts and healthy peanuts to root apoplastic iron were almost the smae,being 52.4% and 52.8%,respectively,indicating that the chlorosis might be caused by the inactivation of iron within peanut plant grown on a calcareous soil under soil moisture conditions.  相似文献   

20.
Zinc (Zn) desorption is an important process to determine Zn bioavailability in calcareous soils. An experiment was performed to assess the pattern of Zn release from 10 calcareous soils of orange orchards, southern Iran and the soil properties influencing it. For Zn desorption studies, soil samples were extracted with diethylene triamine penta-acetic acid solution at pH 7.3 for periods of 0.083–48 h. Suitability of seven kinetic models was also investigated to describe Zn release from soils. Generally, Zn desorption pattern was characterized by a rapid initial desorption up to 2 h of equilibration, followed by a slower release rate. The simple Elovich and two-constant rate kinetic models described Zn release the best, so it seems that Zn desorption is probably controlled by diffusion phenomena. The values of the rate constants for the superior models were significantly correlated with some soil properties such as soil organic matter (SOM) content, cation exchange capacity (CEC), and soil pH, whereas carbonate calcium equivalent and clay content had no significant influence on Zn desorption from soils. SOM had a positive effect on the magnitude of Zn release from soils, while soil pH showed a negative effect on Zn desorption. Furthermore, the initial release rate of soil Zn is probably controlled by CEC in the studied soils. Finally, it could be concluded that SOM, CEC, and soil pH are the most important factors controlling Zn desorption from calcareous soils of orange orchards, southern Iran.

Abbreviations: Soil organic matter (SOM); Cation exchange capacity (CEC); Calcium carbonate equivalent (CCE); Zinc (Zn).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号