首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
铵、钾同时存在时, 土壤对铵的优先吸附   总被引:7,自引:0,他引:7  
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.5mm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.  相似文献   

2.
黄土高原植被自然恢复中土壤团聚体特征   总被引:4,自引:0,他引:4  
Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.  相似文献   

3.
黑土开垦后水稳性团聚体与土壤养分的关系   总被引:3,自引:0,他引:3  
Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.  相似文献   

4.
Paddy fields in the southeastern basin of Dianchi Lake have rapidly changed to greenhouses since 1999. A total of 61 surface soil samples, including 43 greenhouse soils, 12 upland soils, and 6 paddy soils, were collected from a flat lowland area mainly used for agricultural production fields in the southeastern basin of Dianchi Lake. Analyses of the soil samples indicated that the greenhouse soils were characterized by a lower organic matter content, lower pH, and higher soluble nutrients than the paddy soils in the area. The lower organic matter content of the greenhouse soils was ascribed to environmental or management factors rather than the clay content of the soil. Accumulation of soluble nutrients, especially inorganic N, was due to over-application of fertilizers, which also caused soil acidification. The average amount of readily available N, P, and K accumulated in the greenhouse soils was estimated to be equal to or higher than the annual input of these nutrients as a fertilizer, indicating that a reduction in fertilizer application was possible and recommended. In contrast, a very low available Si content was observed in the paddy soils, suggesting the need for Si application for rice production.  相似文献   

5.
中国东南部红壤地区不同植被对土壤侵蚀和土壤养分的影响   总被引:31,自引:0,他引:31  
The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF), citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br). The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP, TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers. However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.  相似文献   

6.
LU Sheng-Gao 《土壤圈》2001,11(2):185-188
The role of organic matter in the formaiton and stability of soil aggregates in mulberry plantation in the Hang-Jia-Hu Plain,northern Zhejiang Province,was evaluated in this study,A positive correlation was found between water-stable aggregate contents and organic matter contents in the ulberry plantation soils,which supported the hypothesis that organic matter was the main eenting agent in formation of aggregates.A close correlation was also foud between statility ofaggregate ad organic matter contents.Regression analysis showed that total nitrogen content was also an idicator of water-stable aggregate content and stability.The aggregate size distribution indicated that the water-stable aggregats 1-0.25mm in diaeter with the decreast of aggregate sizes,and the aggregates 1-0.25mm in diameter had the maximum organic matter content.  相似文献   

7.
Four kinds of plant materials(astragalus,azolla,rice straw and water hyacinth) were allowed to decom-pose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged conditions.Greater amounts of C and N from azolla were retained in soils throughout the 10-year experi-mental period compared to those from the other plant materials.The residual C of all the plant materials in the two soils under upland conditions mineralized at rates corresponding to half-lives between 4.4-6.6 years,while the corresponding figures for those under submerge conditions were between 6.5-13.1 years,Minera-liztion of residual organic N followed the same pattern as residual C.Compared to residual C,however,the mineralization rates of residual organic N in most cases were significantly lower and the percentages of added N retained in soils were higher.More N from plant materials was retained in the yellow-brown soil than in the red soil,but no consistent differences in the amounts of C from plant materials and in the mineraliztion rates of both residual C and residual organic N between the wto soils could be folund.  相似文献   

8.
土地利用史对水田甲烷的排放和甲烷植物的影响   总被引:1,自引:1,他引:1  
The characteristics of methane emission were compared among six types of upland and paddy soils developed from different materials with distinct physical and chemical properties after planting rice.The fluxes of methane emission in submerged soils from the upland were obviously lower than those from the paddy rice field.The flux of methane emission in the paddy soil developed from fluvo-aquic soil was the largest among all the types of soils.Planting of rice was heplful to emission of methane in soils.The amounts of various groups of methanogenic flora were conformed with the differences among the fluxes of methane emission in various types of soils.Methane formation was observed in each type of air-dried soils stored for a long time after addition of water and incubation at 35℃.  相似文献   

9.
A. J. NATH  R. LAL 《土壤圈》2017,27(1):172-176
Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes.However,soil physical disturbances have aggravated the soil degradation process by accelerating erosion.Thus,reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands.Four sites of different land use types/tillage practices,i) no-till (NT) corn (Zea mays L.) (NTC),ii) conventional till (CT) corn (CTC),iii) pastureland (PL),and iv) native forest (NF),were selected at the North Appalachian Experimental Watershed Station,Ohio,USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation,mean weight diameter (MWD) and geometric mean diameter (GMD),and soil organic carbon and total nitrogen contents.The NTC plots received cow manure additions (about 15 t ha-1) every other year.The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-1).The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC.In the 0-10 cm soil layer,the > 4.75-mm size fraction dominated NTC and was 46% more than that for CTC,whereas the < 0.25-mm size fraction was 380% more for CTC than for NTC.The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm,respectively) were higher than those for CTC (1.47 and 0.72 mm,respectively) in the 0-10 cm soil layer.Macroaggregates contained 6%42% and 13% 43% higher organic carbon and total nitrogen contents,respectively,than microaggregates in soil for all sites.Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC.Therefore,a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC.In contrast,soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates.The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF > PL > NTC > CTC,being 35%-46% more for NTC over CTC.The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.  相似文献   

10.
不同肥力水平和利用历史的红壤磷脂脂肪酸图谱   总被引:4,自引:0,他引:4  
Analysis of phospholipid fatty acids(PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories.The total amounts of PLFAs in the soils were significantly correltaed with soil organic carbon, total nitrogen,microbial biomass C and basal respiration,indicating that total PLFA was closely related to fertility and sustainbility in these highly weathered soils.Soils of the eroded wastelan were rich in Gram-positive species .When the eroded soils were planted with citrus trees,the soil microbial population had changed little in 4 years but took up to 8-12 yearss before it reached a significantly different population,Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure.Howver,the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.  相似文献   

11.
针对江西红壤地区不同利用方式引起的土壤质量和肥力的相应变化,研究了不同肥力水平、不同利用方式下红壤旱地水稳性团聚体含量及其养分分布规律。研究表明,荒地土壤中>5 mm水稳性团聚体含量显著高于其他利用方式,花生地和果园土壤则以0.25~0.053 mm的水稳性团聚体为主。各肥力水平下,菜地土壤中除>5 mm水稳性团聚体外,各粒级团聚体中有机碳、全氮和全磷含量均显著高于花生地、果园和荒地土壤。说明菜地土壤长期大量施肥,导致土壤碳、氮、磷养分含量均相对丰富。不同利用方式旱地红壤中,有机碳、全氮主要分布在>5 mm、5~2 mm和2~1 mm的较大粒径水稳性团聚体中。说明随着团聚体粒径增大,其有机碳含量增加,土壤全氮的消长趋势和有机碳一致。土壤全磷较均匀地分布在水稳性团聚体中,如高肥力菜地和荒地土壤各粒级团聚体中全磷含量间均无显著性差异。各利用方式旱地红壤中2~1 mm和1~0.5 mm的水稳性团聚体含量与土壤有机碳、全氮和全磷含量间均达到了极显著正相关。  相似文献   

12.
刘晓利  何园球 《土壤》2009,41(1):84-89
本文就不同开垦年限下旱地、水田、菜园和荒地土壤水稳性团聚体、有机C和各养分的变化规律及其相互关系进行了研究.结果表明,荒地开垦为旱地、水田和菜园后,>5 mm的水稳性团聚体含量迅速下降,但随着利用年限的延长,>0.25 mm的水稳性团聚体总量呈增加趋势.旱地和菜园土壤有机C的积累速度高于全N,而水田土壤中全N和有机C含量同时迅速上升.土壤全P含量随开垦年限增加快速升高,但土壤K素淋失严重,随着熟化程度的提高而降低.红壤各粒级水稳性团聚体含量与有机C和全N含量之间均达到了显著相关关系,而与全P和全K间相关性不显著.可见,土壤团聚体稳定性程度保持在何种水平,主要取决于农田有机C库及N的平衡状况.  相似文献   

13.
不同土地利用方式对岩溶山地土壤团粒结构的影响   总被引:38,自引:6,他引:38  
研究了 5种利用方式对岩溶山地土壤水稳定性团聚体的影响。结果表明 :>0 .2 5 mm水稳定性团聚体为草坡 >林地 >弃耕地 >果园 >耕地 ;林地、草坡的土壤表层和亚表层水稳定性团聚体以 >2 mm为主 ,而果园、弃耕地、耕地土壤 >2 mm的水稳定性团聚体较小。水稳定性团聚体以及团聚的水稳性均与有机质的含量呈正相关 ,林地、草坡开垦后 ,土壤有机质分解加快或补充减少是土壤团聚体水稳定性下降及数量减少的主要原因。坡耕地退耕后 ,土壤团聚体可得到恢复。  相似文献   

14.
Three Andosols (used as grassland, upland field, and paddy field) and two Gray Lowland soils (used as upland field and paddy field) were examined to study the role of organic matter in the stabilization of soil aggregates. It was found that prolonged use of Andosols as grassland or as upland field enabled to maintain a higher level of soil organic carbon than use as paddy field. However, paddy soil exhibited a greater aggregate stability (determined by wet-sieving procedure) than soil under upland field or grassland management. Comparison between two Gray Lowland soils also showed that aggregates in the paddy soil were more stable than in the upland field soil. Among organic constituents examined (such as sodium pyrophosphate (SPP)-extractable organic matter and carbohydrates), only the contents of hot water (HW)-extractable carbohydrates of the soils were significantly correlated with aggregate stability. Paddy soils which showed a greater aggregate stability contained a larger amount of HW -extractable carbohydrates in the soils, and a larger amount of HW -extractable carbohydrates regardless of the size of their aggregates compared with other soils. These findings suggest that HW -extractable carbohydrates which represents easily decomposable organic materials may be of special importance for the stabilization of aggregates in the soils.  相似文献   

15.
This study is aimed at quantifying organic carbon (C) and total nitrogen (N) dynamics associated with physically separated soil fractions in a grassland-cultivation sequence in the Qinghai-Tibetan plateau. Concentrations of organic C and N of soil, free and occluded particulate organic matter (OM), and aggregate- and mineral-associated OM in different land uses are increased in the following order: 50 years cultivation < 12 years cultivation ≤ native grassland. The prolonged cropping of up to 50 years markedly affected the concentrations of free and occluded particulate OM and mineral-associated OM. After wet-sieving, 43% of native grassland soil mass was found in >1−10 mm water-stable aggregates that stored 40% of bulk soil organic C and N; only 16% and 7% of soil mass containing 16% and 7% of bulk soil organic C and N was >1−10 mm water-stable aggregates of soils cultivated for 12 years and 50 years, respectively. This indicated that losses of soil organic C and N following cultivation of native grassland would be largely related to disruption of >1–10 mm size aggregates and exposure of intra-aggregate OM to microbial attack. Organic C and N concentrations of soil aggregates were similar among aggregate size fractions (>0.05−10 mm) within each land use, suggesting that soil aggregation process of these soils did not follow the hierarchy model. The increase of the C-to-N ratio of free and occluded particulate fractions in the cultivated soils compared to the grassland soil indicated a greater loss of N than C.  相似文献   

16.
Surface runoff is the major way of P transport from agricultural land to surface waters. To assess the potential of P loss in runoff in relation to soil P status, the chemical nature and distribution of soil P in different size classes of water-stable aggregates were quantified for two distinctive soil types. For both soils unfertilized areas under pasture and well-fertilized arable soils were sampled. The content of total P, organic P and microbial biomass P (Pmic) decreased in the aggregate size order <0.1, 1–2, and 0.1–1.0 mm respectively. In contrast available P (extracted by Bray I reagent) was lowest in the <0.1 mm aggregate size. Cultivation decreased the percentage of 1–2 mm aggregates but increased that of the <0.1 mm aggregates. Fertilization increased markedly both total P and organic P in the <0.1 mm fraction of arable soils compared to the corresponding samples from unfertilized grassland soils. During aggregate separation, most of P loss was in the form of particulate P and less than 1% in solution. More organic P and Pmic were lost from the grassland soils than from the arable soils.  相似文献   

17.
利用方式对红壤水稳定性团聚体形成的影响   总被引:61,自引:2,他引:61       下载免费PDF全文
本文研究了五种利用方式对红壤水性团聚体形成的影响。结果表明,>稳定性团聚体含量:林地>旱地>荒地>茶园>果园。水稳定性团聚体数量以及团聚的水稳定性均与有机质的含量呈正相关。红壤开垦后,有机抽分解加快或补充减少是导致团聚体稳定性下降和水稳定稳定团聚体减少的主要原因。同理,恢复和改良红壤结构性及结构稳定性的关键是增加有机质的投入。  相似文献   

18.
土地利用方式对红壤团聚体稳定性的影响   总被引:28,自引:6,他引:22  
以湖南、湖北和江西3省第四纪红土母质发育的土壤为材料,应用干、湿筛法比较不同利用方式下土壤的团聚体粒级分布、平均重量直径(MWD)以及团聚体破坏率(PAD)的差异,分析在不同利用方式下土壤团聚体的分布特征以及稳定性与土壤有机碳的联系。结果表明:不同利用方式下干筛团聚体均以>5mm粒级为主,其次为<0.25mm粒级,而湿筛团聚体则以<0.25mm粒级为主。各不同利用方式土壤团聚体干、湿筛MWD值变化趋势大体一致,并且与有机质含量均呈显著正相关关系。各不同利用方式下PAD有显著差异,表现为旱地>果园>水田>茶园>林地,并且PAD与土壤有机质含量和湿筛获得的MWD值呈极显著负相关。不同有机质含量可显著影响不同利用方式下水稳性团聚体粒级分布。>5mm,1~0.5mm,0.5~0.25mm,>0.25mm粒级水稳性团聚体的含量比例均与有机质含量之间有极显著的相关关系,而5~2mm和2~1mm粒级水稳性团聚体则与有机质含量相关性并不显著。不同土地利用方式对土壤有机质含量有极大的影响,有机质含量高低表现为水田>林地>茶园>旱地>果园。  相似文献   

19.
通过对不同恢复年限及恢复类型(2a人工恢复湿地松林、5a人工恢复湿地松林、5a自然恢复湿地松林、5a自然恢复荒地和6a种植杨梅园空地)0~30cm红砂岩发育土壤团聚体中有机碳、全磷、全氮分布规律、化学计量比及其与土壤抗蚀性的相关性进行分析,旨在探究红砂岩侵蚀劣地植被恢复过程中土壤养分变化及抗蚀性。结果表明:红砂岩纯裸地土壤养分含量较低,经过不同措施恢复后,土壤理化性质有不同程度的改善。不同类型红砂岩土壤团聚体级配不同。裸地以5 mm粒径团聚体为主,约占60%以上。除自然恢复5a荒地以2~5 mm团聚体为主以外,其余恢复措施的红砂岩土壤均以小于0.25mm粒径微团聚体为主。不同粒径土壤团聚体有机碳、全氮含量均随恢复年限增长呈增加趋势。C、N集中分布在0.25~1 mm团聚体上,尤其是0.5~1 mm团聚体;P则分布较为均匀。采取不同恢复措施后土壤抗蚀性有不同程度的提高,其中结构体破坏率从55.68%降至10%以下。研究区土壤C:N均值为15.0:1;C:P均值为79.7:1;N:P均值为4.0:1。由此可知不同红砂岩发育土壤随着恢复年限而增长,抗蚀性能大幅提升,由于养分主要分布在0.5~5 mm土壤水稳性的团聚体上,而该部分团聚体流失严重,导致土壤养分含量低、土壤抗蚀性差,恢复过程较为困难。  相似文献   

20.
横坡和顺坡耕作对紫色土土壤团聚体稳定性的影响   总被引:7,自引:0,他引:7  
通过径流小区试验,分析探讨了紫色土横坡和顺坡两种耕作模式下表层(0~20 cm)土壤水稳性团聚体及有机碳含量的特征,为紫色土区坡耕地的有效改造和综合利用提供科学依据。试验结果表明,横坡耕作下土壤水稳性指数K值比顺坡耕作高38.99%,而土壤分散性D值为顺坡耕作的1.64倍,横坡耕作抗蚀性大于顺坡耕作。横坡耕作>0.25 mm水稳性团聚体含量比顺坡耕作增加3.62%,>5 mm、5~3 mm、3~2 mm水稳性团聚体含量横坡耕作均高于顺坡耕作,横坡耕作显著提高>2 mm水稳性团聚体含量。横坡耕作下团聚体结构体破坏率较顺坡耕作减少3.05%,团聚体平均重量直径为顺坡耕作的1.39倍。2种耕作模式下0.5~2 mm团聚体有机碳含量均最高,>0.25 mm不同粒级团聚体有机碳含量百分数均随粒径的减小而减小,均在0.5~0.25 mm粒级下达到最小。横坡和顺坡耕作模式下2~1 mm团聚体有机碳含量无显著差异。横坡耕作较顺坡耕作能够显著增加紫色土>2 mm水稳性团聚体含量,且对有机碳的固持作用更好,有利于土壤结构的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号